我正在参加「掘金·启航计划」
最近在对接Dolphinscheduler到公司系统中,想了解Flink任务是如何被调度起来的,于是在本地进行了一些调式,本文会进行一些说明
启动Dolphinscheduler
对于Dolphinscheduler的启动,这里直接选择了本地启动。
运行dolphinscheduler-standalone-server模块中的StandaloneServer即可。
因为我需要运行Flink任务,因此做了如下配置
资源相关的配置,这里配置了HDFS相关的地址,因为需要在本地启动好HDFS。
./sbin/start-dfs.sh
# resource storage type: HDFS, S3, NONE
resource.storage.type=HDFS
# resource store on HDFS/S3 path, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions. "/dolphinscheduler" is recommended
resource.storage.upload.base.path=/dolphinscheduler
# whether to startup kerberos
hadoop.security.authentication.startup.state=false
# resource view suffixs
#resource.view.suffixs=txt,log,sh,bat,conf,cfg,py,java,sql,xml,hql,properties,json,yml,yaml,ini,js
# if resource.storage.type=HDFS, the user must have the permission to create directories under the HDFS root path
resource.hdfs.root.user=lizu
# if resource.storage.type=S3, the value like: s3a://dolphinscheduler; if resource.storage.type=HDFS and namenode HA is enabled, you need to copy core-site.xml and hdfs-site.xml to conf dir
resource.hdfs.fs.defaultFS=hdfs://0.0.0.0:9000
# use sudo or not, if set true, executing user is tenant user and deploy user needs sudo permissions; if set false, executing user is the deploy user and doesn't need sudo permissions
sudo.enable=true
环境变量相关,我是直接配置的本机的环境变量信息,Dolphinscheduler在运行的时候会判断resources目录下是否有环境变量文件,存在就会执行source 环境变量的命令。
# JAVA_HOME, will use it to start DolphinScheduler server
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_281.jdk/Contents/Home
export PATH=$PATH:$JAVA_HOME/bin
export M2_HOME=/Users/lizu/app/apache-maven-3.6.3
export PATH=$PATH:$M2_HOME/bin
export SCALA_HOME=/Users/lizu/app/scala-2.11.12
#export SCALA_HOME=/Users/lizu/app/scala-2.12.13
export PATH=$PATH:$SCALA_HOME/bin
#export SPARK_HOME=/Users/lizu/app/spark-2.4.3-bin-hadoop2.7
export SPARK_HOME=/Users/lizu/app/spark-3.0.2-bin-hadoop2.7
export PATH=$PATH:$SPARK_HOME/bin
export FLINK_HOME=/Users/lizu/app/flink-1.13.6
export PATH=$PATH:$FLINK_HOME/bin
export PATH=/Library/Frameworks/Python.framework/Versions/3.6/bin:$PATH
export HADOOP_HOME=/Users/lizu/app/hadoop-2.7.6
export PATH=$PATH:$HADOOP_HOME/bin
#export HIVE_HOME=/Users/lizu/app/apache-hive-1.2.1-bin
export HIVE_HOME=/Users/lizu/app/hive-2.3.4
export PATH=$PATH:$HIVE_HOME/bin
#export NODE_HOME=/Users/lizu/app/node-v14.16.0
export NODE_HOME=/Users/lizu/app/node-v16.17.0
export PATH=$PATH:$NODE_HOME/bin
export PATH=$PATH:/Users/lizu/app/go/bin
export PATH=$PATH:/Users/lizu/app/gradle-6.3/bin
alias python="/usr/local/bin/python3"
export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/pyspark:$SPARK_HOME/python/lib/py4j-0.10.9-src.zip:$PYTHONPATH
然后启动前端就可以访问了地址如下:http://127.0.0.1:5173/
Flink任务配置
启动local集群
因为要运行Flink任务,因此需要提前准备好Flink的环境,这里我选择了local模型。直接在本地进行启动。
./start-cluster.sh
启动完成后就可以看到Flink的web页面了
然后就可以去Dolphinscheduler配置Flink任务了。配置Flink任务主要分了如下几个步骤
上传资源文件
可以直接选择官方example中的SocketWindowWordCount.jar
配置工作流
这里主要配置主函数以及前面上传的资源,因为SocketWindowWordCount运行需要参数,这里在主程序参数中设置了其入参
启动运行
最后可以启动进行测试,需要首先开启socket端口
nc -l 9999
通过页面就可以看到我们的Flink任务在执行中了。
Flink任务运行相关源码
通过上面的内容,已经将Flink任务在Dolphinscheduler中运行了起来,最后来通过源码看看任务运行的一些细节吧。
在Dolphinscheduler中,任务的是通过Master分配到Worker中进行运行的。并且任务运行的状态也会实时的通知到Master。两者之间的交互是通过netty实现的。
worker节点对任务的接收
worker启动后,会启动rpc的服务端和客户端,以及一个workerManagerThread用于从队列中获取需要执行的任务
@PostConstruct
public void run() {
this.workerRpcServer.start();
this.workerRpcClient.start();
this.taskPluginManager.loadPlugin();
this.workerRegistryClient.setRegistryStoppable(this);
this.workerRegistryClient.start();
this.workerManagerThread.start();
this.messageRetryRunner.start();
/*
* registry hooks, which are called before the process exits
*/
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
if (!ServerLifeCycleManager.isStopped()) {
close("WorkerServer shutdown hook");
}
}));
}
在WorkerRpcServer中注册了很多处理器,暂时只关注这一个吧TaskDispatchProcessor
this.nettyRemotingServer.registerProcessor(CommandType.TASK_DISPATCH_REQUEST, taskDispatchProcessor);
TaskDispatchProcessor会接收从Master发送的task dispatch消息,并加入到worker任务队列waitSubmitQueue中
final String workflowMasterAddress = taskDispatchCommand.getMessageSenderAddress();
logger.info("Receive task dispatch request, command: {}", taskDispatchCommand);
//....忽略部分代码
WorkerDelayTaskExecuteRunnable workerTaskExecuteRunnable = WorkerTaskExecuteRunnableFactoryBuilder
.createWorkerDelayTaskExecuteRunnableFactory(
taskExecutionContext,
workerConfig,
workflowMasterAddress,
workerMessageSender,
alertClientService,
taskPluginManager,
storageOperate)
.createWorkerTaskExecuteRunnable();
// submit task to manager
boolean offer = workerManager.offer(workerTaskExecuteRunnable);
if (!offer) {
logger.warn("submit task to wait queue error, queue is full, current queue size is {}, will send a task reject message to master", workerManager.getWaitSubmitQueueSize());
workerMessageSender.sendMessageWithRetry(taskExecutionContext, workflowMasterAddress, CommandType.TASK_REJECT);
} else {
logger.info("Submit task to wait queue success, current queue size is {}", workerManager.getWaitSubmitQueueSize());
}
WorkerTaskExecuteRunnable执行任务
WorkerManagerThread线程会不断的从worker任务队列waitSubmitQueue中获取到需要执行的任务,然后提交到线程池中
@Override
public void run() {
Thread.currentThread().setName("Worker-Execute-Manager-Thread");
while (!ServerLifeCycleManager.isStopped()) {
try {
if (!ServerLifeCycleManager.isRunning()) {
Thread.sleep(Constants.SLEEP_TIME_MILLIS);
}
if (this.getThreadPoolQueueSize() <= workerExecThreads) {
final WorkerDelayTaskExecuteRunnable workerDelayTaskExecuteRunnable = waitSubmitQueue.take();
workerExecService.submit(workerDelayTaskExecuteRunnable);
} else {
WorkerServerMetrics.incWorkerOverloadCount();
logger.info("Exec queue is full, waiting submit queue {}, waiting exec queue size {}",
this.getWaitSubmitQueueSize(), this.getThreadPoolQueueSize());
ThreadUtils.sleep(Constants.SLEEP_TIME_MILLIS);
}
} catch (Exception e) {
logger.error("An unexpected interrupt is happened, "
+ "the exception will be ignored and this thread will continue to run", e);
}
}
}
//work线程池
workerExecService = new WorkerExecService(
ThreadUtils.newDaemonFixedThreadExecutor("Worker-Execute-Thread", workerConfig.getExecThreads()),
taskExecuteThreadMap);
最终的执行逻辑就在WorkerTaskExecuteRunnable中了。
@Override
public void run() {
try {
// set the thread name to make sure the log be written to the task log file
Thread.currentThread().setName(taskExecutionContext.getTaskLogName());
LoggerUtils.setWorkflowAndTaskInstanceIDMDC(taskExecutionContext.getProcessInstanceId(),
taskExecutionContext.getTaskInstanceId());
logger.info("Begin to pulling task");
initializeTask();
if (Constants.DRY_RUN_FLAG_YES == taskExecutionContext.getDryRun()) {
taskExecutionContext.setCurrentExecutionStatus(TaskExecutionStatus.SUCCESS);
taskExecutionContext.setEndTime(new Date());
TaskExecutionContextCacheManager.removeByTaskInstanceId(taskExecutionContext.getTaskInstanceId());
workerMessageSender.sendMessageWithRetry(taskExecutionContext, masterAddress,
CommandType.TASK_EXECUTE_RESULT);
logger.info(
"The current execute mode is dry run, will stop the subsequent process and set the taskInstance status to success");
return;
}
beforeExecute();
TaskCallBack taskCallBack = TaskCallbackImpl.builder().workerMessageSender(workerMessageSender)
.masterAddress(masterAddress).build();
executeTask(taskCallBack);
afterExecute();
} catch (Throwable ex) {
logger.error("Task execute failed, due to meet an exception", ex);
afterThrowing(ex);
} finally {
LoggerUtils.removeWorkflowAndTaskInstanceIdMDC();
}
}
在WorkerTaskExecuteRunnable中主要进行了几个步骤
1-initializeTask:设置任务的环境变量Set task envFile,起始时间等
2-beforeExecute:任务执行的前置校验,任务状态变成running
3-executeTask:任务的执行
4-afterExecute:任务执行完成后的操作,通知master修改状态
FlinkTask执行逻辑
最后来看看Flink任务的具体执行逻辑,executeTask中会调用具体实现类的handle方法
@Override
public void executeTask(TaskCallBack taskCallBack) throws TaskException {
if (task == null) {
throw new TaskException("The task plugin instance is not initialized");
}
task.handle(taskCallBack);
}
Flink任务的具体实现类是FlinkTask继承自AbstractYarnTask
// todo split handle to submit and track
@Override
public void handle(TaskCallBack taskCallBack) throws TaskException {
try {
// SHELL task exit code
TaskResponse response = shellCommandExecutor.run(buildCommand());
setExitStatusCode(response.getExitStatusCode());
// set appIds
setAppIds(String.join(TaskConstants.COMMA, getApplicationIds()));
setProcessId(response.getProcessId());
} catch (InterruptedException ex) {
Thread.currentThread().interrupt();
logger.info("The current yarn task has been interrupted", ex);
setExitStatusCode(TaskConstants.EXIT_CODE_FAILURE);
throw new TaskException("The current yarn task has been interrupted", ex);
} catch (Exception e) {
logger.error("yarn process failure", e);
exitStatusCode = -1;
throw new TaskException("Execute task failed", e);
}
}
其本质就是调用shellCommandExecutor来执行。最终是提交了一个shell命令来执行Flink任务。
public TaskResponse run(String execCommand) throws IOException, InterruptedException {
TaskResponse result = new TaskResponse();
int taskInstanceId = taskRequest.getTaskInstanceId();
if (null == TaskExecutionContextCacheManager.getByTaskInstanceId(taskInstanceId)) {
result.setExitStatusCode(EXIT_CODE_KILL);
return result;
}
if (StringUtils.isEmpty(execCommand)) {
TaskExecutionContextCacheManager.removeByTaskInstanceId(taskInstanceId);
return result;
}
String commandFilePath = buildCommandFilePath();
// create command file if not exists
createCommandFileIfNotExists(execCommand, commandFilePath);
// build process
buildProcess(commandFilePath);
// parse process output
parseProcessOutput(process);
int processId = getProcessId(process);
result.setProcessId(processId);
// cache processId
taskRequest.setProcessId(processId);
boolean updateTaskExecutionContextStatus =
TaskExecutionContextCacheManager.updateTaskExecutionContext(taskRequest);
if (Boolean.FALSE.equals(updateTaskExecutionContextStatus)) {
ProcessUtils.kill(taskRequest);
result.setExitStatusCode(EXIT_CODE_KILL);
return result;
}
// print process id
logger.info("process start, process id is: {}", processId);
// if timeout occurs, exit directly
long remainTime = getRemainTime();
// waiting for the run to finish
boolean status = process.waitFor(remainTime, TimeUnit.SECONDS);
// if SHELL task exit
if (status) {
// SHELL task state
result.setExitStatusCode(process.exitValue());
} else {
logger.error("process has failure, the task timeout configuration value is:{}, ready to kill ...",
taskRequest.getTaskTimeout());
ProcessUtils.kill(taskRequest);
result.setExitStatusCode(EXIT_CODE_FAILURE);
}
int exitCode = process.exitValue();
String exitLogMessage = EXIT_CODE_KILL == exitCode ? "process has killed." : "process has exited.";
logger.info(exitLogMessage
+ " execute path:{}, processId:{} ,exitStatusCode:{} ,processWaitForStatus:{} ,processExitValue:{}",
taskRequest.getExecutePath(), processId, result.getExitStatusCode(), status, exitCode);
return result;
}
我们可以通过执行日志来看看上面做了什么
INFO] 2023-06-22 23:49:12.520 +0800 - flink task command : flink run -p 1 -sae -c org.apache.flink.streaming.examples.socket.SocketWindowWordCount flink-example/SocketWindowWordCount.jar --hostname localhost --port 9999
[INFO] 2023-06-22 23:49:12.520 +0800 - Begin to create command file:/tmp/dolphinscheduler/exec/process/lizu/9986178674720/9986206731168_3/5/5/5_5.command
[INFO] 2023-06-22 23:49:12.521 +0800 - Success create command file, command: #!/bin/bash
BASEDIR=$(cd `dirname $0`; pwd)
cd $BASEDIR
source /Users/lizu/idea/scheduler/dolphinscheduler/dolphinscheduler-standalone-server/target/classes/dolphinscheduler_env.sh
flink run -p 1 -sae -c org.apache.flink.streaming.examples.socket.SocketWindowWordCount flink-example/SocketWindowWordCount.jar --hostname localhost --port 9999
[INFO] 2023-06-22 23:49:12.526 +0800 - task run command: sudo -u lizu -E bash /tmp/dolphinscheduler/exec/process/lizu/9986178674720/9986206731168_3/5/5/5_5.command
[INFO] 2023-06-22 23:49:12.547 +0800 - process start, process id is: 23572
[INFO] 2023-06-22 23:49:15.560 +0800 - -> Job has been submitted with JobID 192c0f1b984f2bc10cd2ec6d39525fbb
其实就是讲Flink运行的命令和环境变量信息都写入到了一个脚本文件中,然后去运行这个脚本文件,比如:(sudo -u lizu -E bash /tmp/dolphinscheduler/exec/process/lizu/9986178674720/9986206731168_3/5/5/5_5.command)
如果是Flink任务则会启动一个CliFrontend进程并且代码中通过process.waitFor一直等待进程的返回,直到返回失败或者成功的标志。
最终还会通过afterExecute方法去通知master任务运行的情况
protected void sendTaskResult() {
taskExecutionContext.setCurrentExecutionStatus(task.getExitStatus());
taskExecutionContext.setEndTime(new Date());
taskExecutionContext.setProcessId(task.getProcessId());
taskExecutionContext.setAppIds(task.getAppIds());
taskExecutionContext.setVarPool(JSONUtils.toJsonString(task.getParameters().getVarPool()));
workerMessageSender.sendMessageWithRetry(taskExecutionContext, masterAddress, CommandType.TASK_EXECUTE_RESULT);
logger.info("Send task execute result to master, the current task status: {}",
taskExecutionContext.getCurrentExecutionStatus());
}
相关运行日志
[INFO] 2023-06-22 23:49:15.560 +0800 - -> Job has been submitted with JobID 192c0f1b984f2bc10cd2ec6d39525fbb
[INFO] 2023-06-23 00:11:35.405 +0800 - process has exited. execute path:/tmp/dolphinscheduler/exec/process/lizu/9986178674720/9986206731168_3/5/5, processId:23572 ,exitStatusCode:1 ,processWaitForStatus:true ,processExitValue:1
[INFO] 2023-06-23 00:11:35.411 +0800 - Send task execute result to master, the current task status: TaskExecutionStatus{code=6, desc='failure'}
总结
上面就是Flink任务在Dolphinscheduler中如何运行的简单介绍,如果有不对的地方,希望可以提出来一起进步。