对于一个分布式的计算任务而言,设置一个合适的并行度十分重要。Hive的计算任务由MapReduce完成,故并行度的调整需要分为Map端和Reduce端。
- Map端并行度
Map端的并行度,也就是Map的个数。是由输入文件的切片数决定的。一般情况下,Map端的并行度无需手动调整。
以下特殊情况可考虑调整map端并行度:
(1)、查询的表中存在大量小文件
按照Hadoop默认的切片策略,一个小文件会单独启动一个map task负责计算。若查询的表中存在大量小文件,则会启动大量map task,造成计算资源的浪费。这种情况下,可以使用Hive提供的CombineHiveInputFormat,多个小文件合并为一个切片,从而控制map task个数。相关参数如下:
et hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
(2)、map端有复杂的查询逻辑
若SQL语句中有正则替换、json解析等复杂耗时的查询逻辑时,map端的计算会相对慢一些。若想加快计算速度,在计算资源充足的情况下,可考虑增大map端的并行度,令map task多一些,每个map task计算的数据少一些。相关参数如下:
set mapreduce.input.fileinputformat.split.maxsize=256000000;
- Reduce端并行度
Reduce端的并行度,也就是Reduce个数。相对来说,更需要关注。Reduce端的并行度,可由用户自己指定,也可由Hive自行根据该MR Job输入的文件大小进行估算。
Reduce端的并行度的相关参数如下:
--指定Reduce端并行度,默认值为-1,表示用户未指定
set mapreduce.job.reduces;
--Reduce端并行度最大值
set hive.exec.reducers.max;
--单个Reduce Task计算的数据量,用于估算Reduce并行度
set hive.exec.reducers.bytes.per.reducer;
Reduce端并行度的确定逻辑如下:
-
若指定参数mapreduce.job.reduces的值为一个非负整数,则Reduce并行度为指定值。否则,Hive自行估算Reduce并行度,估算逻辑如下:
- 假设Job输入的文件大小为totalInputBytes
- 参数hive.exec.reducers.bytes.per.reducer的值为bytesPerReducer。
- 参数hive.exec.reducers.max的值为maxReducers。
则Reduce端的并行度为:
根据上述描述,可以看出,Hive自行估算Reduce并行度时,是以整个MR Job输入的文件大小作为依据的。因此,在某些情况下其估计的并行度很可能并不准确,此时就需要用户根据实际情况来指定Reduce并行度了。
优化案例
hive (default)>
select
province_id,
count(*)
from order_detail
group by province_id;
优化前,上述sql语句,在不指定Reduce并行度时,Hive自行估算并行度的逻辑如下:
totalInputBytes= 1136009934
bytesPerReducer=256000000
maxReducers=1009
经计算,Reduce并行度为:
优化思路:上述sql语句,在默认情况下,是会进行map-side聚合的,也就是Reduce端接收的数据,实际上是map端完成聚合之后的结果。观察任务的执行过程,会发现,每个map端输出的数据只有34条记录,共有5个map task。
也就是说Reduce端实际只会接收170(34*5)条记录,故理论上Reduce端并行度设置为1就足够了。这种情况下,用户可通过以下参数,自行设置Reduce端并行度为1。
--指定Reduce端并行度,默认值为-1,表示用户未指定
set mapreduce.job.reduces=1;