并发-AQS之Reentrantlonk源码解读

86 阅读8分钟

ReentrantLock 是 Java.util.concurrent 中的一个可重入互斥锁,它通过 AQS(AbstractQueuedSynchronizer)实现了同步操作,支持公平锁和非公平锁两种机制。

整体UML架构

image.png

构造函数

支持公平锁和非公平锁,默认非公平锁

public ReentrantLock() {
    sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

获取锁

着重讲述lock

lock()

public void lock() {
    sync.lock();
}

此处公平锁和非公平锁由不同的实现

非公平锁实现

final void lock() {
    // 设置同步状态
    if (compareAndSetState(0, 1))
        //设置独占状态线程
        setExclusiveOwnerThread(Thread.currentThread());
    else
        //状态设置失败,已经被其他线程或者当前线程获取
        acquire(1);
}
//AQS方法
protected final void setExclusiveOwnerThread(Thread thread) {
    exclusiveOwnerThread = thread;
}

acquire()用于获取锁并阻塞线程,直到获取锁成功

public final void acquire(int arg) {
    // 1.尝试获取锁
    if (!tryAcquire(arg) &&
        //2.获取锁失败,将构造独占Node并加入等待队列
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        //3.如果中断,再次设置中断标记
        selfInterrupt();
}

tryAcquire(arg)是AQS提供的API方法,在NonfairSync中实现如下

protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
}
//Sync方法
final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    //未被占用
    if (c == 0) {
        if (compareAndSetState(0, acquires)) {
            //设置当前线程是锁的独占线程
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    //占用的是当前线程,可重入锁设计
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    //其他线程占用
    return false;
}

addWaiter前期已经贴出,具体可参考juejin.cn/post/724320… final boolean acquireQueued(final Node node, int arg)是独占方式获取锁,与共享模式获取锁类似doAcquireSharedInterruptibly

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();
            //前驱节点是头结点,尝试获取状态state
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            //不是头结点或者头结点获取失败处理
            if (shouldParkAfterFailedAcquire(p, node) &&
                //当前线程park并判断是否中断
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            //失败释放等待队列中Node节点
            cancelAcquire(node);
    }
}

shouldParkAfterFailedAcquire parkAndCheckInterrupt cancelAcquire前期已经贴出,具体可参考juejin.cn/post/724320… selfInterrupt如果在acquireQueued中已经中断,需要重新设置中断标记,因为Thread.interrupted()是会清除中断标记的

static void selfInterrupt() {
    Thread.currentThread().interrupt();
}

公平锁实现

在FairSync中

final void lock() {
    acquire(1);
}

acquire和上述分公平锁实现一致,其中tryAcquire实现不一致

protected final boolean tryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
        if (!hasQueuedPredecessors() &&
            compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0)
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}
public final boolean hasQueuedPredecessors() {
    Node t = tail; // Read fields in reverse initialization order
    Node h = head;
    Node s;
    return h != t &&
        ((s = h.next) == null || s.thread != Thread.currentThread());
}

其他获取锁方法

中断获取锁public void lockInterruptibly() throws InterruptedException

public void lockInterruptibly() throws InterruptedException {
    sync.acquireInterruptibly(1);
}
public final void acquireInterruptibly(int arg)
        throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    if (!tryAcquire(arg))
        doAcquireInterruptibly(arg);
}
private void doAcquireInterruptibly(int arg)
    throws InterruptedException {
    final Node node = addWaiter(Node.EXCLUSIVE);
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                //此处和非中断获取锁不一样
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

尝试获取锁public boolean tryLock()

public boolean tryLock() {
    return sync.nonfairTryAcquire(1);
}

nonfairTryAcquire上文已经提出实现

尝试获取锁(一定时间,可中断)public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException

public boolean tryLock(long timeout, TimeUnit unit)
        throws InterruptedException {
    return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
public final boolean tryAcquireNanos(int arg, long nanosTimeout)
        throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    return tryAcquire(arg) ||
        //次数实现不一致
        doAcquireNanos(arg, nanosTimeout);
}
private boolean doAcquireNanos(int arg, long nanosTimeout)
        throws InterruptedException {
    if (nanosTimeout <= 0L)
        return false;
    final long deadline = System.nanoTime() + nanosTimeout;
    final Node node = addWaiter(Node.EXCLUSIVE);
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return true;
            }
            nanosTimeout = deadline - System.nanoTime();
            //超时未获取到,返回
            if (nanosTimeout <= 0L)
                return false;
            if (shouldParkAfterFailedAcquire(p, node) &&
                nanosTimeout > spinForTimeoutThreshold)
                LockSupport.parkNanos(this, nanosTimeout);
            // 中断
            if (Thread.interrupted())
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

解锁

public void unlock() {
    sync.release(1);
}
public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            //唤醒后继节点
            unparkSuccessor(h);
        return true;
    }
    return false;
}
protected final boolean tryRelease(int releases) {
    int c = getState() - releases;
    //非锁占用线程,直接抛出异常
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    if (c == 0) {
        free = true;
        //可重入锁全部释放,将独占锁线程置为null
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}

条件队列

AQS的条件队列在 juejin.cn/post/724304… 中已有描述 本次主要对Condition接口方法进行源码解析,主要是等待和唤醒两类

public interface Condition {
    void await() throws InterruptedException;

    void awaitUninterruptibly();

    long awaitNanos(long nanosTimeout) throws InterruptedException;

    boolean await(long time, TimeUnit unit) throws InterruptedException;

    boolean awaitUntil(Date deadline) throws InterruptedException;

    void signal();

    void signalAll();
}

等待

await()

//AQS的ConditionObject
public final void await() throws InterruptedException {
    //检查当前线程是否被中断,如果被中断,则抛出 InterruptedException 异常
    if (Thread.interrupted())
        throw new InterruptedException();
    //1.当前线程加入条件等待队列中,创建一个新的 Node.CONDITION(条件等待模式)节点,并将其加入条件等待队列的尾部
    Node node = addConditionWaiter();
    //2.完全释放当前线程持有的锁。该方法会释放当前线程持有的所有锁,而不仅仅是 Condition 相关的锁
    int savedState = fullyRelease(node);
    int interruptMode = 0;
    //3.进入循环,检查当前线程是否被加入到同步队列中,如果没有,则调用 LockSupport.park(this) 方法阻塞当前线程,等待其他线程唤醒
    while (!isOnSyncQueue(node)) {
        //当其他线程调用 signal() 或 signalAll() 方法唤醒当前线程时,当前线程会重新竞争锁,如果获取到了锁,则继续执行
        LockSupport.park(this);
        // 检查当前线程是否被中断,如果被中断,则返回中断模式
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
    // 重新将当前线程加入同步队列中,等待重新获取锁
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null) // clean up if cancelled
        //清除已经被取消的节点
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        //通过中断标记做后续处理
        reportInterruptAfterWait(interruptMode);
}

addConditionWaiter构造一个Node节点,并加入到队列尾部

private Node addConditionWaiter() {
    Node t = lastWaiter;
    // If lastWaiter is cancelled, clean out.
    if (t != null && t.waitStatus != Node.CONDITION) {
        //从头节点开始清除CANCLED节点
        unlinkCancelledWaiters();
        t = lastWaiter;
    }
    Node node = new Node(Thread.currentThread(), Node.CONDITION);
    if (t == null)
        firstWaiter = node;
    else
        t.nextWaiter = node;
    lastWaiter = node;
    return node;
}
private void unlinkCancelledWaiters() {
    Node t = firstWaiter;
    Node trail = null;
    while (t != null) {
        Node next = t.nextWaiter;
        if (t.waitStatus != Node.CONDITION) {
            t.nextWaiter = null;
            if (trail == null)
                firstWaiter = next;
            else
                trail.nextWaiter = next;
            if (next == null)
                lastWaiter = trail;
        }
        else
            trail = t;
        t = next;
    }
}

fullyRelease释放当前线程state,唤醒其他节点

final int fullyRelease(Node node) {
    boolean failed = true;
    try {
        int savedState = getState();
        if (release(savedState)) {
            failed = false;
            return savedState;
        } else {
            throw new IllegalMonitorStateException();
        }
    } finally {
        if (failed)
            node.waitStatus = Node.CANCELLED;
    }
}
public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

isOnSyncQueue用于检查指定节点是否在同步队列中,Condition中的队列是等待队列,AQS中的变种CHL是同步队列

final boolean isOnSyncQueue(Node node) {
    if (node.waitStatus == Node.CONDITION || node.prev == null)
        return false;
    if (node.next != null) // If has successor, it must be on queue
        return true;
    return findNodeFromTail(node);
}
private boolean findNodeFromTail(Node node) {
    Node t = tail;
    for (;;) {
        if (t == node)
            return true;
        if (t == null)
            return false;
        t = t.prev;
    }
}

checkInterruptWhileWaiting用于检查线程在等待过程中是否被中断

private int checkInterruptWhileWaiting(Node node) {
    return Thread.interrupted() ?
        //中断才执行
        (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
        0;
}
final boolean transferAfterCancelledWait(Node node) {
    // 尝试将节点的 waitStatus 从 Node.CONDITION(表示节点在条件等待队列中)设置为 0(表示节点已经被取消)
    if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
        //需要将节点重新加入同步队列中,以便其他线程能够重新竞争锁
        enq(node);
        return true;
    }
    //如果 compareAndSetWaitStatus(node, Node.CONDITION, 0) 方法返回 false,说明节点已经被其他线程
    //取消或者已经被加入同步队列中,当前线程需要等待其他线程完成操作。因此,使用一个简单的自旋循环,不断
    //地调用 isOnSyncQueue(node) 方法检查节点是否已经加入同步队列中。一旦节点被加入同步队列中,就退出循环并返回 false。
    while (!isOnSyncQueue(node))
        Thread.yield();
    return false;
}

reportInterruptAfterWait THROW_IE抛出异常 REINTERRUPT再次中断

private void reportInterruptAfterWait(int interruptMode)
    throws InterruptedException {
    if (interruptMode == THROW_IE)
        throw new InterruptedException();
    else if (interruptMode == REINTERRUPT)
        selfInterrupt();
}

其他等待

public final long awaitNanos(long nanosTimeout) throws InterruptedException

public final long awaitNanos(long nanosTimeout)
        throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    Node node = addConditionWaiter();
    int savedState = fullyRelease(node);
    final long deadline = System.nanoTime() + nanosTimeout;
    int interruptMode = 0;
    while (!isOnSyncQueue(node)) {
        if (nanosTimeout <= 0L) {
            //如果超时时间已经到期,则调用 transferAfterCancelledWait(Node node) 方法将当前节点转移到同步队列中
            transferAfterCancelledWait(node);
            break;
        }
        //时间很短,就不park,直接循环
        if (nanosTimeout >= spinForTimeoutThreshold)
            LockSupport.parkNanos(this, nanosTimeout);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
        nanosTimeout = deadline - System.nanoTime();
    }
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null)
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
    return deadline - System.nanoTime();
}

public final boolean awaitUntil(Date deadline) throws InterruptedException

public final boolean awaitUntil(Date deadline)
        throws InterruptedException {
    long abstime = deadline.getTime();
    if (Thread.interrupted())
        throw new InterruptedException();
    Node node = addConditionWaiter();
    int savedState = fullyRelease(node);
    boolean timedout = false;
    int interruptMode = 0;
    while (!isOnSyncQueue(node)) {
        if (System.currentTimeMillis() > abstime) {
            timedout = transferAfterCancelledWait(node);
            break;
        }
        LockSupport.parkUntil(this, abstime);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null)
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
    return !timedout;
}

public final boolean await(long time, TimeUnit unit) throws InterruptedException

public final boolean await(long time, TimeUnit unit)
        throws InterruptedException {
    long nanosTimeout = unit.toNanos(time);
    if (Thread.interrupted())
        throw new InterruptedException();
    Node node = addConditionWaiter();
    int savedState = fullyRelease(node);
    final long deadline = System.nanoTime() + nanosTimeout;
    boolean timedout = false;
    int interruptMode = 0;
    while (!isOnSyncQueue(node)) {
        if (nanosTimeout <= 0L) {
            timedout = transferAfterCancelledWait(node);
            break;
        }
        if (nanosTimeout >= spinForTimeoutThreshold)
            LockSupport.parkNanos(this, nanosTimeout);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
        nanosTimeout = deadline - System.nanoTime();
    }
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null)
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
    return !timedout;
}

public final void awaitUninterruptibly()

public final void awaitUninterruptibly() {
    Node node = addConditionWaiter();
    int savedState = fullyRelease(node);
    boolean interrupted = false;
    while (!isOnSyncQueue(node)) {
        LockSupport.park(this);
        if (Thread.interrupted())
            interrupted = true;
    }
    if (acquireQueued(node, savedState) || interrupted)
        selfInterrupt();
}

唤醒

单个唤醒

public final void signal() {
    //不是当前线程持有锁,直接抛出异常
    if (!isHeldExclusively())
        throw new IllegalMonitorStateException();
    Node first = firstWaiter;
    if (first != null)
        doSignal(first);
}

doSignal用于唤醒等待队列中的第一个线程

private void doSignal(Node first) {
    do {
        if ( (firstWaiter = first.nextWaiter) == null)
            lastWaiter = null;
        first.nextWaiter = null;
    //将第一个节点转移到同步队列中,并返回转移结果。如果转移成功,则返回 true;否则返回 false。
    } while (!transferForSignal(first) &&
             (first = firstWaiter) != null);
}
final boolean transferForSignal(Node node) {
    if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
        return false;
    Node p = enq(node);
    int ws = p.waitStatus;
    if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
        LockSupport.unpark(node.thread);
    return true;
}

全部唤醒

public final void signalAll() {
    if (!isHeldExclusively())
        throw new IllegalMonitorStateException();
    Node first = firstWaiter;
    if (first != null)
        doSignalAll(first);
}
private void doSignalAll(Node first) {
    lastWaiter = firstWaiter = null;
    do {
        Node next = first.nextWaiter;
        first.nextWaiter = null;
        transferForSignal(first);
        first = next;
    } while (first != null);
}

JDK中实现AQS简介

同步工具与AQS关联详细介绍
AQS原理讲解AQS原理介绍并发-AQS原理讲解
ReentrantLock使用AQS保存锁重复持有的次数。当一个线程获取锁时,ReentrantLock记录当前获得锁的线程标识,用于检测是否重复获取,以及错误线程试图解锁操作时异常情况的处理。AQS之Reentrantlonk源码解读
Semaphore使用AQS同步状态来保存信号量的当前计数。tryRelease会增加计数,acquireShared会减少计数。Semaphore 源码分析以及AQS共享加解锁
CountDownLatch在多线程并发执行任务时,有时需要让某些线程等待某些条件达成后再开始执行,这时就可以使用CountDownLatch来实现CountDownLatch 源码分析
ThreadPoolExecutor创建线程池中的工作线程worker继承AQS,实现独占资源参考 并发-AQS之ThreadPoolExecutor源码解读(一)
CyclicBarrier多个线程等待彼此达到一个共同的屏障点,然后同时继续执行。并发-AQS之CyclicBarrier源码解读
ReentrantReadWriteLock可重入读写锁,它允许多个线程同时读取一个共享资源,但只允许一个线程写入该共享资源。参考 并发-AQS之ReentrantReadWriteLock源码解读(一)