LeetCode 周赛 342(2023/04/23)容斥原理、计数排序、滑动窗口、子数组 GCB

1,123 阅读10分钟

⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 [BaguTree Pro] 知识星球提问。

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 17 篇文章,往期回顾请移步到文章末尾~

大家好,我是小彭。

前天刚举办 2023 年力扣杯个人 SOLO 赛,昨天周赛就出了一场 Easy - Easy - Medium - Medium 的水场,不得不说 LeetCode 是懂礼数的 😁。

接下来,请你跟着小彭的思路,一步步将问题做难,再将问题做简单。

Q1. 计算列车到站时间(Easy)

简单模拟题,不多讲解。

Q2. 倍数求和(Easy)

题解 1:暴力解法 O(n)O(n) 时间复杂度

题解 2:分析数据特征后发现数据存在等差数列性质,我们利用容斥原理和等差数列求和公式,可以把优化到 O(1)O(1) 时间复杂度

Q3. 滑动子数组的美丽值(Medium)

题解 1:在滑动窗口的基础上,结合快速选择查找滑动窗口中第 x 小的元素,时间复杂度是 O(nk)O(n·k)

题解 2:分析数据特征后发现题目的值域非常小,我们可以用计数排序代替快速选择,时间复杂度为 O(nU)O(n·U)

Q4. 使数组所有元素变成 1 的最少操作次数(Medium)

在问题分析后我们将原问题抽象为 “寻找 GCB 为 1 的最短子数组”,关联相似的 “和为 k 的最短子数组” 问题,我们有从暴力 → 有序集合 → 单调性优化的解法:

题解 1:暴力 O(n(n+logU))O(n·(n + logU)) 时间复杂度

题解 2:有序集合 O(nlgUlg(lgU))O(n·lgU·lg(lgU)) 时间复杂度

题解 3:单调性优化 O(nlgU)O(n·lgU) 时间复杂度


Q1. 计算列车到站时间(Easy)

题目地址

leetcode.cn/problems/ca…

题目描述

给你一个正整数 arrivalTime 表示列车正点到站的时间(单位:小时),另给你一个正整数 delayedTime 表示列车延误的小时数。

返回列车实际到站的时间。

注意,该问题中的时间采用 24 小时制。

示例 1:

输入:arrivalTime = 15, delayedTime = 5
输出:20
解释:列车正点到站时间是 15:00 ,延误 5 小时,所以列车实际到站的时间是 15 + 5 = 2020:00)。

示例 2:

输入:arrivalTime = 13, delayedTime = 11
输出:0
解释:列车正点到站时间是 13:00 ,延误 11 小时,所以列车实际到站的时间是 13 + 11 = 24(在 24 小时制中表示为 00:00 ,所以返回 0)。

提示:

  • 1 <= arrivaltime < 24
  • 1 <= delayedTime <= 24

题解(模拟)

简单模拟题,按题意实现即可。

class Solution {
    fun findDelayedArrivalTime(arrivalTime: Int, delayedTime: Int): Int {
        return (arrivalTime + delayedTime) % 24
    }
}

复杂度分析:

  • 时间复杂度:O(1)O(1)
  • 空间复杂度:O(1)O(1)

Q2. 倍数求和(Easy)

题目地址

leetcode.cn/problems/su…

题目描述

给你一个正整数 n ,请你计算在 [1,n] 范围内能被 357 整除的所有整数之和。

返回一个整数,用于表示给定范围内所有满足约束条件的数字之和。

示例 1:

输入:n = 7
输出:21
解释:在[1, 7] 范围内能被 3、5、7 整除的所有整数分别是 3、5、6、7 。数字之和为21 。

示例 2:

输入:n = 10
输出:40
解释:在[1, 10] 范围内能被 3、5、7 整除的所有整数分别是 3、5、6、7、9、10 。数字之和为40 。

示例 3:

输入:n = 9
输出:30
解释:在[1, 9] 范围内能被 3、5、7 整除的所有整数分别是 3、5、6、7、9 。数字之和为30 。

提示:

  • 1 <= n <= 103

预备知识 - 容斥原理

定义集合 A 表示能够被 3 整除的数,定义集合 B 表示能够被 5 整除的数,定义集合 C 表示能够被 7 整除的数。如果把这 3 个集合直接加起来,会多出来一些元素重复统计了,因此需要扣除 A ∩ B,A ∩ C 和 B ∩ C ,但是又有一小部分元素多扣了,反而再需要加上 A ∩ B ∩ C。这就是 容斥原理

ABC=A+B+CABACBC+ABCA ∪ B ∪ C = A + B + C - A ∩ B - A ∩ C - B ∩ C + A ∩ B ∩ C

其中:

  • A ∪ B ∪ C 表示能够被 3 或 5 或 7 整除的数,也就是原问题的解;
  • A ∩ B 表示能够同时被 3 和 5 整除的数;
  • A ∩ C 表示能够同时被 3 和 7 整除的数;
  • B ∩ C 表示能够同时被 5 和 7 整除的数。

预备知识 - 等差数列求和

  • 等差数列求和公式:(首项 + 尾项) * 项数 / 2

题解一(暴力)

先思考暴力解法:

算法:枚举每个数,检查该数字是否为 3 / 5 / 7 的倍数,是则计入结果中。

class Solution {
    fun sumOfMultiples(n: Int): Int {
        var ret = 0
        for (i in 1 .. n) {
            if(i % 3 == 0 || i % 5 == 0 || i % 7 == 0) ret += i
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:O(n)O(n) 其中 n 为 nums 数组的长度,每个元素最多访问 1 次;
  • 空间复杂度:O(1)O(1)

题解二(容斥原理 + 等差数列求和公式)

暴力解法是否有优化空间呢,先分析重复计算:

  • 要点 1:可以观察到 [1, n] 范围中的目标数是存在关联的,以 3 的倍数为例,3、6、9、12 是以 3 为等差的等差数列,而等差数列的和可以使用公式计算。数字 m 在 [1, n] 范围内中的倍数为 n / m 个,可以使用等差数列求和公式以 O(1) 算出这部分元素之和;
  • 要点 2:结合容斥原理,可以在 O(1) 时间复杂度求出原问题。那么能够同时被 3 和 5 整除的等差数列如何计算呢?其实就是计算 15 的倍数。同理能够同时被 3 和 5 和 7 整除的等差数列就是 105 的倍数。

至此,结合容斥原理模拟即可:

class Solution {
    fun sumOfMultiples(n: Int): Int {
        return sum(n, 3) + sum(n, 5) + sum(n, 7) - sum(n, 15) - sum(n, 21) - sum(n, 35) + sum(n, 105)
    }

    private fun sum(n:Int, k:Int) :Int {
        // 等差数列求和公式:(首项 + 尾项) * 项数 / 2
        return (k + (n / k * k)) * (n / k) / 2
    }
}

复杂度分析:

  • 时间复杂度:O(1)O(1)
  • 空间复杂度:O(1)O(1)

Q3. 滑动子数组的美丽值(Medium)

题目地址

leetcode.cn/problems/sl…

题目描述

给你一个长度为 n 的整数数组 nums ,请你求出每个长度为 k 的子数组的 美丽值 。

一个子数组的 美丽值 定义为:如果子数组中第 x 小整数 是 负数 ,那么美丽值为第 x 小的数,否则美丽值为 0 。

请你返回一个包含 **n - k + 1 个整数的数组,依次 表示数组中从第一个下标开始,每个长度为 k 的子数组的 美丽值 。

  • 子数组指的是数组中一段连续 非空 的元素序列。

示例 1:

输入:nums = [1,-1,-3,-2,3], k = 3, x = 2
输出:[-1,-2,-2]
解释:总共有 3 个 k = 3 的子数组。
第一个子数组是[1, -1, -3] ,第二小的数是负数 -1 。
第二个子数组是[-1, -3, -2] ,第二小的数是负数 -2 。
第三个子数组是[-3, -2, 3] ,第二小的数是负数 -2 。

示例 2:

输入:nums = [-1,-2,-3,-4,-5], k = 2, x = 2
输出:[-1,-2,-3,-4]
解释:总共有 4 个 k = 2 的子数组。
[-1, -2] 中第二小的数是负数 -1 。[-2, -3] 中第二小的数是负数 -2 。[-3, -4] 中第二小的数是负数 -3 。[-4, -5] 中第二小的数是负数 -4 。

示例 3:

输入:nums = [-3,1,2,-3,0,-3], k = 2, x = 1
输出:[-3,0,-3,-3,-3]
解释:总共有 5 个 k = 2 的子数组。
[-3, 1] 中最小的数是负数 -3 。[1, 2] 中最小的数不是负数,所以美丽值为 0 。[2, -3] 中最小的数是负数 -3 。[-3, 0] 中最小的数是负数 -3 。[0, -3] 中最小的数是负数 -3 。

提示:

  • n == nums.length
  • 1 <= n <= 105
  • 1 <= k <= n
  • 1 <= x <= k
  • 50 <= nums[i] <= 50

预备知识

求出每个长度为 k 的子数组的美丽值,容易想到可以用滑动窗口。

伪代码为:

// 伪代码
for (i in 0 until n) {
    // 进入窗口
    list.add(i)
    // 离开窗口
    if (i >= k) list.remove(i - k)
    if (i >= k - 1) {
        // 计算窗口答案
    }
}

题解一(滑动窗口 + 快速选择 · 超出时间限制)

在滑动窗口的基础上,使用快速选择查找窗口中第 x 小的数:

class Solution {

    private val random = Random(0)

    fun getSubarrayBeauty(nums: IntArray, k: Int, x: Int): IntArray {
        val n = nums.size
        val ret = LinkedList<Int>()
        val list = ArrayList<Int>()
        for (i in 0 until n) {
            // 进入窗口
            list.add(i)
            // 离开窗口
            if (i >= k) list.remove(i - k)
            if (i >= k - 1) {
                // 计算窗口答案
                quickSelect(nums, list, x)
                val num = nums[list[x - 1]]
                ret.add(if (num < 0) num else 0)
            }
        }
        return ret.toIntArray()
    }

    private fun quickSelect(nums: IntArray, list: ArrayList<Int>, x: Int) {
        val target = x - 1
        var left = 0
        var right = list.size - 1
        while (left < right) {
            val pivot = partition(nums, list, left, right)
            if (pivot == target) {
                return
            } else if (pivot < target) {
                left = pivot + 1
            } else {
                right = pivot - 1
            }
        }
    }

    private fun partition(nums: IntArray, list: ArrayList<Int>, left: Int, right: Int): Int {
        val random = random.nextInt(right - left + 1) + left
        list.swap(random, right)
        var p = left
        for (i in left until right) {
            if (nums[list[i]] < nums[list[right]]) list.swap(i, p++)
        }
        list.swap(p, right)
        return p
    }

    private fun ArrayList<Int>.swap(i: Int, j: Int) {
        val temp = this[i]
        this[i] = this[j]
        this[j] = temp
    }
}

复杂度分析:

  • 时间复杂度:O(nk)O(n·k) 其中 n 是 nums 数组的长度,单次窗口快速选择的时间复杂度是 O(k)O(k)
  • 空间复杂度:O(k)O(k) 滑动窗口空间。

题解二(滑动窗口 + 计数排序)

注意到题目的值域非常小,能否利用起来:

我们可以用计数排序代替快速选择,用 cnts 计数数组计算窗口内每个元素的出现次数,再根据计数数组计算出第 x 小的数:

class Solution {

    private val random = Random(0)

    fun getSubarrayBeauty(nums: IntArray, k: Int, x: Int): IntArray {
        val n = nums.size
        val OFFSET = 50
        val cnts = IntArray(OFFSET * 2 + 1)
        val ret = IntArray(n - k + 1)
        outer@ for (i in 0 until n) {
            // 进入窗口
            cnts[OFFSET + nums[i]]++
            // 离开窗口
            if (i >= k) cnts[OFFSET + nums[i - k]]--
            if (i >= k - 1) {
                // 计算窗口美丽值
                var count = x
                // for (num in -OFFSET .. -1) {
                for (num in -OFFSET .. OFFSET) {
                    count -= cnts[num + 50]
                    if (count <= 0) {
                        // 找到第 x 小的数
                        // ret[i - k + 1] = num
                        ret[i - k + 1] = if(num < 0) num else 0
                        continue@outer
                    }
                }
            }
        }
        return ret
    }
}

另外,由于题目要求美丽值是负数,所以在计算窗口美丽值时,我们只需要枚举 [-50, -1] 的元素值。

复杂度分析:

  • 时间复杂度:O(nU)O(n·U) 其中 n 是 nums 数组的长度,U 是值域大小 101。每次滑动窗口求第 x 小的元素时间是 O(U)O(U)
  • 空间复杂度:O(U)O(U) 计数数组空间。

Q4. 使数组所有元素变成 1 的最少操作次数(Medium)

题目地址

leetcode.cn/problems/mi…

题目描述

给你一个下标从 0 开始的  整数数组 nums 。你可以对数组执行以下操作 任意 次:

  • 选择一个满足 0 <= i < n - 1 的下标 i ,将 nums[i] 或者 nums[i+1] 两者之一替换成它们的最大公约数。

请你返回使数组 nums 中所有元素都等于 1 的 最少 操作次数。如果无法让数组全部变成 1 ,请你返回 -1 。

两个正整数的最大公约数指的是能整除这两个数的最大正整数。

示例 1:

输入:nums = [2,6,3,4]
输出:4
解释:我们可以执行以下操作:
- 选择下标 i = 2 ,将 nums[2] 替换为 gcd(3,4) = 1 ,得到 nums = [2,6,1,4] 。
- 选择下标 i = 1 ,将 nums[1] 替换为 gcd(6,1) = 1 ,得到 nums = [2,1,1,4] 。
- 选择下标 i = 0 ,将 nums[0] 替换为 gcd(2,1) = 1 ,得到 nums = [1,1,1,4] 。
- 选择下标 i = 2 ,将 nums[3] 替换为 gcd(1,4) = 1 ,得到 nums = [1,1,1,1]

示例 2:

输入:nums = [2,10,6,14]
输出:-1
解释:无法将所有元素都变成 1 。

提示:

  • 2 <= nums.length <= 50
  • 1 <= nums[i] <= 106

问题分析

分析目标结果:

使得数组中所有元素都变成 1 的最少操作次数。

分析题目示例:

  • 由于在每次操作中最多只能将一个数字修改为最大公约数,那么将 1 个元素操作为 “1” 的最小操作次数(如果可行)不会低于 1 次,将 n 个大于 1 的元素操作为 “1” 的最小次数不会低于 n 次,例如样例 [2,6,1,4]。
  • 如果数组中至少存在 1 个 “1” 时,我们只需要将每个 “1” 与相邻的 “非 1” 元素组合操作,就能将所有元素,例如样例 [2,6,1,4]。这说明,问题的最小操作次数正好就是数组中不是 “1” 的个数。
  • 如果数组中不存在 “1”,需要先操作出原始的 “1”:
    • 如果数组中所有元素的最大公约数大于 1,那么无论如何也无法操作出数字 1,例如样例 [2, 10, 6, 14];
    • 否则,我们总可以操作 x 次获得原始 “1”,那么问题就等于 count + n - 1;

至此,程序整体框架确定。伪代码为:

if (所有元素的最大公约数 > 1) return -1
if (1 的个数 > 0) return n - (1 的个数)
操作 count 次得到原始的 “1return count + n - 1

接下来,我们需要思考如何计算出操作出原始 “1” 的最小次数:

回归到原问题操作,我们在每次操作中可以将一个数修改为最大公约数,那么对于连续的一段子数组(长度为 subSize),我们总可以用 subSize - 1 次操作将其中一个数变为整个子数组的最大公约数。如果这个最大公约数是 1,那么操作次数正好是 subSize - 1,反之无法操作出 1。

至此,可以想出暴力解法:

题解一(暴力枚举子数组)

在暴力解法中,我们枚举所有子数组,记录出所有子数组操作出原始 “1” 的最少操作次数。

class Solution {
    fun minOperations(nums: IntArray): Int {
        val n = nums.size
        // 1 的个数
        var cnt1 = 0
        var gcbAll = 0
        for (x in nums) {
            gcbAll = gcb(gcbAll, x)
            if (x == 1) cnt1++
        }
        // 所有数的最大公约数大于 1
        if (gcbAll > 1) return -1
        // 1 的个数大于 0
        if (cnt1 > 0) return n - cnt1

        // 操作出原始 “1” 的最小次数
        var minCount = n
        // 枚举子数组
        for (i in 0 until n) {
            var gcb = 0
            for (j in i until n) {
                gcb = gcb(gcb, nums[j])
                if (gcb == 1) {
                    minCount = Math.min(minCount, j - i /* 子数组长度 - 1 */)
                    break // 继续枚举 i 为起点的子数组不会得到更优解
                }
            }
        }
        return minCount + n - 1
    }

    // 求 x 和 y 的最大公约数(辗转相除法)
    private fun gcb(x: Int, y: Int): Int {
        var a = x
        var b = y
        while (b != 0) {
            val temp = a % b
            a = b
            b = temp
        }
        return a
    }
}

复杂度分析:

  • 时间复杂度:O(n(n+logU))O(n·(n + logU)) 其中 n 是 nums 数组的长度,U 是数组元素的最大值。单次 GCD 计算的时间复杂度是 O(logU)O(logU),乍看起来算法整体的时间复杂度是 O(n2logU)O(n^2·logU),其实不对。因为在每层循环中,每次 GCD 计算并不是独立的,而是贯穿整个内层循环的,所以 GCD 的总时间取决于数据的最大值 U,在辗转相除中取余的次数也取决于 U。
  • 空间复杂度:O(1)O(1) 不考虑结果数组,仅使用常量级别空间。

题解一的复杂度是平方级别的,如果放大题目数据量到 10^5 要怎么做?

问题抽象

在分析暴力解法的重复计算之前,我先向你抛出一个 “题外话”:

请你回答:“给定一个整数数组 nums 和目标和 k,如何求和为 k 的最短子数组?”

  • 解法 1:暴力枚举所有子数组,记录出所有子数组和为 k 的最短子数组长度(这与题解一暴力枚举子数组求操作出原始 “1” 的最少操作次数类似);
  • 解法 2:我们从左向右线性遍历,并维护以 num[j] 为右端点的前缀和映射表 。在此基础上,我们将当前位置 nums[i] 的前缀和与前缀和映射表中的每个元素取差值,就可以快速地获得以 num[i] 为右端点所有子数组的和。另外,由于我们是从左向右遍历的,所以前缀和映射表记录的索引正好是可以构造最短子数组的索引,子数组长度为 i - j + 1(当然,我们可以直接 O(1) 查询目标前缀和出现时的索引,而不需要真的用前缀和映射表的每个元素取差值)。

注:这个 “题外话” 与 LeetCode 560. 和为 K 的子数组 类似,如果你不熟悉可以先做做看。

那么,这个 “题外话” 与今天这道题有什么关系:

根据 GCB 运算的性质,当我们以 nums[i] 为左端点,不断向右扩展子数组的右端点时,我们的目标是求 “GCB 为 1 的子数组” 对吧。与 “求和为 k 的最短子数组” 类似,我们可以维护以 nums[j] 为左端点的 GCB 映射表 <gcb to 左端点 index>。在此基础上,我们将当前位置 nums[i] 与 GCB 映射表中的每个元素取 GCB,就可以快速的获得以 nums[i] 为右端点的所有子数组的 GCB。

那听起来这个算法依然是 O(n^2)?不对。

原因在题解一的时间复杂度分析中讲到了,因为每次 GCD 计算并不是独立的,而是贯穿整个循环的,GCB 映射表的大小取决于数据的最大值 U,而不是数据量,最多有 logU 种 GCB。因此优化后算法的时间复杂度是 O(n·lgU),但增加了空间复杂度为 O(lgU)。

示意图

题解二(有序集合)

至此,在题解一的基础上修改 “枚举子数组计算操作出原始 “1” 的最小次数” 不分代码即可:

class Solution {
    fun minOperations(nums: IntArray): Int {
        // 略...

        // 计算操作出原始 “1” 的最小次数
        var minCount = n
        // gcb 散列表 <gcd to 左端点 index>
        var gcbMap = TreeMap<Int, Int>()
        // 枚举子数组
        for (i in 0 until n) {
            val newGcbMap = TreeMap<Int, Int>()
            // 枚举 gcb 映射表
            for ((gcb, index) in gcbMap) {
                newGcbMap[gcb(gcb, nums[i])] = index
            }
            newGcbMap[nums[i]] = i
            // 检查最小的 gcb 是否为 1
            val minEntry = newGcbMap.firstEntry()
            if (1 == minEntry.key) {
                minCount = Math.min(minCount, i - minEntry.value /* 子数组长度 - 1 */)
            }
            gcbMap = newGcbMap
        }
        return minCount + n - 1
    }

    // 求 x 和 y 的最大公约数
    private fun gcb(x: Int, y: Int): Int {
        // 略...
    }
}

复杂度分析:

  • 时间复杂度:O(nlgUlg(lgU))O(n·lgU·lg(lgU)) 由于使用了有序集合,所以每一轮迭代中要算上排序时间 O(lgUlg(lgU))O(lgU·lg(lgU))
  • 空间复杂度:O(lgU)O(lgU) GCB 映射表空间。

题解三(单调性优化)

思路参考:灵茶山艾府的题解

题解二的时间复杂度比我们分析的复杂度略要一些,如何寻找优化空间?

继续分析 GCB 的数据特征,可以发现:当我们从左向右遍历时,随着子数组的长度增大,子数组的 GCB 要么不变,要么变小,存在 单调性。 所以,我们并不需要维护有序集合,GCB 列表中最靠前的元素一定是最小的 GCB。

class Solution {
    fun minOperations(nums: IntArray): Int {
        // 略...

        // 计算操作出原始 “1” 的最小次数
        var minCount = n
        // gcb 列表 <gcd to 左端点 index>
        var gcbs = ArrayList<IntArray>()
        // 枚举子数组
        for (i in 0 until n) {
            val newGcbs = ArrayList<IntArray>()
            // 枚举 gcb 列表
            for (element in gcbs) {
                val gcb = gcb(element[0], nums[i])
                if (newGcbs.isEmpty() || newGcbs[newGcbs.size - 1][0] != gcb) {
                    // 增加 GCB
                    newGcbs.add(intArrayOf(gcb, element[1]))
                } else {
                    // 原地去重
                    newGcbs[newGcbs.size - 1][1] = element[1]
                }
            }
            newGcbs.add(intArrayOf(nums[i], i))
            // 检查最小的 gcb 是否为 1
            val minEntry = newGcbs[0]
            if (1 == minEntry[0]) {
                minCount = Math.min(minCount, i - minEntry[1] /* 子数组长度 - 1 */)
            }
            gcbs = newGcbs

        }
        return minCount + n - 1
    }

    // 求 x 和 y 的最大公约数
    private fun gcb(x: Int, y: Int): Int {
        // 略...
    }
}

复杂度分析:

  • 时间复杂度:O(nlgU)O(n·lgU)
  • 空间复杂度:O(lgU)O(lgU)

相似题目:


推荐阅读

LeetCode 上分之旅系列往期回顾:

⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~