到目前为止,我们写的所有demo都是绘制一些基础图片,如三角形,就算是绘制立方体,其本质上也是在绘制三角形,如果要绘制复杂的图形怎么办?
OpenGL 绘制任何图形的流程都是
- 处理顶点
- 处理纹理
- 处理光照、材质等
- 绘制基础图片
如果我要绘制一个立体的地球,该怎么绘制呢?
可能会遇到的问题有:顶点非常多,该选用什么基础图片,纹理顶点怎么处理等等,如果还按照之前的老方式,我们真的可能无法绘制,那有什么办法能解决它吗
本章就是来讲如何绘制复杂对象的:模型加载
1、我对模型的理解
我需要的模型能解决什么问题呢?
- 模型中包含大量顶点,不需要我手动设置
- 模型中包含纹理以及纹理坐标,不需要我手动指定
- 模型中包含大量各种参数,如光照、材质等等,不用我手动设置
- 模型中可以用基础图形绘制出来,比如三角形
如果模型相当于一个大的数据源,包含以上所有数据,开发只需要解析这个模型,然后设置这些数据,那是不是就非常方便了。模型就是这个作用。
2、Assimp
Assimp,非常出名的模型加载库。它能加载各种模型,然后把模型保存到Assimp的通用数据结构中。理解这个数据结构至关重要
当使用Assimp导入一个模型的时候,它通常会将整个模型加载进一个场景(Scene)对象,它会包含导入的模型/场景中的所有数据。Assimp会将场景载入为一系列的节点(Node),每个节点包含了场景对象中所储存数据的索引,每个节点都可以有任意数量的子节点。Assimp数据结构的(简化)模型如下
注意:scene中其实已经包含了所有的数据,它的子节点中包含的mesh数据,其实只是scene里mesh数组的索引
注意mesh里包含的数据:
- vertices:顶点数据
- normals:法线
- texturecoods:纹理坐标
- faces:其实就是indices,其实是ebo数据,绘制索引
- materialindex:纹理索引,纹理保存在scene里的materials数据中
从上图可知,模型中包含这些数据,那我们解析模型,把数据保存起来,绘制时设置各种参数,是不是就ok了
3、mesh
一个模型中只有一个scene,scene中会包含大量的mesh,我们需要定义mesh的数据结构,绘制方法,最后整个模型的绘制就是遍历所有的mesh即可
struct Vertex {
glm::vec3 Position;
glm::vec3 Normal;
glm::vec2 TexCoords;
glm::vec3 Tangent;
glm::vec3 Bitangent;
int m_BoneIDs[MAX_BONE_INFLUENCE];
float m_Weights[MAX_BONE_INFLUENCE];
};
struct TextureInfo {
unsigned int id;
std::string type;
std::string path;
};
class Mesh {
public:
std::vector<Vertex> vertices;
std::vector<unsigned int> indices;
std::vector<TextureInfo> textures;
unsigned int vao;
Mesh(std::vector<Vertex> vertices, std::vector<unsigned int> indices, std::vector<TextureInfo> textures) {
this->vertices = vertices;
this->indices = indices;
this->textures = textures;
setupMesh();
}
void Draw(Shader& shader) {
unsigned int diffuseNr = 1;
unsigned int specularNr = 1;
unsigned int normalNr = 1;
unsigned int heightNr = 1;
for(unsigned int i = 0; i < textures.size(); i++) {
glActiveTexture(GL_TEXTURE0 + i);
std::string number;
std::string name = textures[i].type;
if (name == "texture_diffuse") {
number = std::to_string(diffuseNr++);
} else if(name == "texture_specular") {
number = std::to_string(specularNr++); // transfer unsigned int to string
} else if(name == "texture_normal") {
number = std::to_string(normalNr++); // transfer unsigned int to string
} else if(name == "texture_height") {
number = std::to_string(heightNr++);
}
glUniform1i(glGetUniformLocation(shader.ID, (name+ number).c_str()), i);
glBindTexture(GL_TEXTURE_2D, textures[i].id);
}
glBindVertexArray(vao);
glDrawElements(GL_TRIANGLES, static_cast<unsigned int>(indices.size()), GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
glActiveTexture(GL_TEXTURE0);
}
private:
unsigned int vbo, ebo;
void setupMesh() {
glGenVertexArrays(1, &vao);
glGenBuffers(1, &vbo);
glGenBuffers(1, &ebo);
glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal));
// vertex texture coords
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords));
// vertex tangent
glEnableVertexAttribArray(3);
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Tangent));
// vertex bitangent
glEnableVertexAttribArray(4);
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Bitangent));
// ids
glEnableVertexAttribArray(5);
glVertexAttribIPointer(5, 4, GL_INT, sizeof(Vertex), (void*)offsetof(Vertex, m_BoneIDs));
// weights
glEnableVertexAttribArray(6);
glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, m_Weights));
glBindVertexArray(0);
}
};
mesh的类结构应如上所示,有构建、绘制。
- setupMesh,设置各种顶点数据
- draw,设置纹理,设置各种uniform数据,绘制基础图形(三角形)
这里只有一点不太好理解,即这段代码:
for(unsigned int i = 0; i < textures.size(); i++) {
glActiveTexture(GL_TEXTURE0 + i);
std::string number;
std::string name = textures[i].type;
if (name == "texture_diffuse") {
number = std::to_string(diffuseNr++);
} else if(name == "texture_specular") {
number = std::to_string(specularNr++); // transfer unsigned int to string
} else if(name == "texture_normal") {
number = std::to_string(normalNr++); // transfer unsigned int to string
} else if(name == "texture_height") {
number = std::to_string(heightNr++);
}
LOGI("name = %s", (name+ number).c_str());
glUniform1i(glGetUniformLocation(shader.ID, (name+ number).c_str()), i);
glBindTexture(GL_TEXTURE_2D, textures[i].id);
}
模型中有很多纹理,纹理肯定是uniform类型数据,设置uniform类型数据时,需要指定它在着色器代码中的变量名。开发肯定不知道模型中有多少个纹理,那么也不知道要在着色器代码中定义多少个变量,名字怎么定义?
模型中纹理有好几种类型,即:
- texture_diffuse
- texture_specular
- texture_normal
- texture_height
默认认为uniform变量名为这些类型名后加数字,这样方便开发
4、model
model中要做的事情,其实只有3个了,如何加载模型、解析模型、遍历mesh绘制模型
unsigned int TextureFromFile(const char *path, const string &directory, bool gamma = false);
class Model {
public:
vector<TextureInfo> textures_loaded;
vector<Mesh> meshes;
string directory;
bool gammaCorrection;
Model(){}
Model(string const& path, bool gamma = false): gammaCorrection(gamma) {
loadModel(path);
}
void Draw(Shader& shader) {
for (unsigned int i = 0; i < meshes.size(); ++i) {
meshes[i].Draw(shader);
}
}
private:
void loadModel(string const& path) {
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate
| aiProcess_GenSmoothNormals
| aiProcess_FlipUVs
| aiProcess_CalcTangentSpace);
if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) {
LOGI("ERROR::ASSIMP:: %s", importer.GetErrorString());
return;
}
// retrieve the directory path of the filepath
directory = path.substr(0, path.find_last_of('/'));
LOGI("directory:: %s", directory.c_str());
processNode(scene->mRootNode, scene);
}
void processNode(aiNode *node, const aiScene *scene) {
for (unsigned int i = 0; i < node->mNumMeshes; ++i) {
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
meshes.push_back(processMesh(mesh, scene));
}
for (int i = 0; i < node->mNumChildren; ++i) {
processNode(node->mChildren[i], scene);
}
}
Mesh processMesh(aiMesh *mesh, const aiScene *scene) {
vector<Vertex> vertices;
vector<unsigned int> indices;
vector<TextureInfo> textures;
for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
Vertex vertex;
glm::vec3 vector;
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
if (mesh->HasNormals())
{
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
}
if(mesh->mTextureCoords[0]) // does the mesh contain texture coordinates?
{
glm::vec2 vec;
// a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
// tangent
vector.x = mesh->mTangents[i].x;
vector.y = mesh->mTangents[i].y;
vector.z = mesh->mTangents[i].z;
vertex.Tangent = vector;
// bitangent
vector.x = mesh->mBitangents[i].x;
vector.y = mesh->mBitangents[i].y;
vector.z = mesh->mBitangents[i].z;
vertex.Bitangent = vector;
} else {
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
}
vertices.push_back(vertex);
}
// now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
for(unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// retrieve all indices of the face and store them in the indices vector
for(unsigned int j = 0; j < face.mNumIndices; j++) {
indices.push_back(face.mIndices[j]);
}
}
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
vector<TextureInfo> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
// 2. specular maps
vector<TextureInfo> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
// 3. normal maps
std::vector<TextureInfo> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
// 4. height maps
std::vector<TextureInfo> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());
// return a mesh object created from the extracted mesh data
return Mesh(vertices, indices, textures);
}
vector<TextureInfo> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName) {
vector<TextureInfo> textures;
for (int i = 0; i < mat->GetTextureCount(type); ++i) {
aiString str;
mat->GetTexture(type, i, &str);
bool skip = false;
for (int j = 0; j < textures_loaded.size(); ++j) {
if (std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0) {
textures.push_back(textures_loaded[j]);
skip = true;
break;
}
}
if (!skip) {
TextureInfo textureInfo;
textureInfo.id = TextureFromFile(str.C_Str(), directory);
textureInfo.type = typeName;
textureInfo.path = str.C_Str();
textures.push_back(textureInfo);
textures_loaded.push_back(textureInfo);
}
}
return textures;
}
unsigned int TextureFromFile(const char* path, const string& directory, bool gamma = false) {
string filename =string(path);
filename = directory + '/' + filename;
unsigned int textureID;
glGenTextures(1, &textureID);
LOGI("TextureFromFile path = %s", filename.c_str());
cv::Mat textureImage = cv::imread(filename);
if (!textureImage.empty()) {
cv::cvtColor(textureImage, textureImage, CV_BGR2RGB);
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, textureImage.cols,
textureImage.rows, 0, GL_RGB, GL_UNSIGNED_BYTE, textureImage.data);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
} else {
LOGI("TextureFromFile cv read is empty");
}
return textureID;
}
};
这部分代码如上,没什么理解难度,唯一有一点:解析出一个纹理了,会得到这个纹理的路径,如何从一个路径中得到纹理呢?
之前我们获取纹理的方式,是通过java端的反射,拿到bitmap的buf,设置纹理buf,现在这种方式有点不太方便了,有没有更方便的方式呢?有的,用opencv,opencv是非常出名的图片处理框架,在人工智能这方面用得尤其多,用它来解析图片就不用绕java那一层了,方便很多。
5、总结
理解模型,最重要的一点就是把模型当成一个大的数据buf,解析再设置即可,虽然代码看起来很多,但其实是个纸老虎,都是之前学习过的