Codeforces Round 855 (Div. 3) 题解集

24 阅读2分钟

题目链接&比赛链接

CF1800A Is It a Cat?

洛谷链接

Description

给定一个字符串及其长度,如果满足下列条件输出 YES否则输出 NO

  • 该字符串由四部分组成
  • 每部分有且仅有一种字母(不分大小写),依次为 m,e,o,w

tt 组数据。

Solution

条件包含两部分,有且仅有这四种字母出现,并且可以分成四个字母块(每个字母块有且仅有一种字母,且字母块排列必须是给定顺序)。

详见代码。

Code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int t;
int a[10][10];
bool vis[10];
ll read(){
    ll x=0,f=1;
    char ch;
    ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+ch-'0';
        ch=getchar();
    }
    return x*f;
}
void solve(){
	int n,ans=0;
	string s;
	cin>>n;
	cin>>s;
	memset(a,-1,sizeof(a)); //a[1~4][0/1] 表示四种字母第一个出现的位置和最后一次出现的位置,记得初始化数组
	for(int i=0;i<n;i++){
		if(s[i]=='m'||s[i]=='M'){
			if(a[1][1]==-1) a[1][1]=i; //第一次出现
			a[1][2]=i; //只要是该字母就要更新最后出现的位置
			ans++; //ans记录这四种字母出现的总数
		}else if(s[i]=='e'||s[i]=='E'){
			if(a[2][1]==-1) a[2][1]=i;
			a[2][2]=i;
			ans++;
		}else if(s[i]=='o'||s[i]=='O'){
			if(a[3][1]==-1) a[3][1]=i;
			a[3][2]=i;
			ans++;
		}else if(s[i]=='W'||s[i]=='w'){
			if(a[4][1]==-1) a[4][1]=i;
			a[4][2]=i;
			ans++;
		}
	}
	if(a[1][1]!=0||a[2][1]!=a[1][2]+1||a[3][1]!=a[2][2]+1||a[4][1]!=a[3][2]+1||a[4][2]!=n-1||ans!=n){ //满足条件肯定是四种字母按顺序头连尾,尾连头且ans一定等于n
		cout<<"NO"<<endl;
	}else cout<<"YES"<<endl;
}
int main(){
	t=read();
	while(t--){
		solve();
	}
	return 0;
}

CF1800B Count the Number of Pairs

洛谷链接

Description

给定 nnkk,长度为 nn 的字符串 ss

一个大写的字母和一个小写格式的该字母可以合并,合并后消失,且分值加一。

一次操作定义为将一个字母改变其大小写格式(大写转小写,小写转大写)。

求在不超过 kk 次操作后,该字符串的分值的最大值。

tt 组数据。

Solution

a1,a2a_1,a_2 表示字母 a的大小写数量。

为了让分值最大,所以要让大小写数量之差越小,这样才能使能合并的对数越多。

一种字母最多能有 (a1+a2)÷2\lfloor(a_1+a_2)\div 2\rfloor 对大小写能合并,而达到这个数量需要 add=(a1+a2)÷2min(a1,a2)add=\lfloor(a_1+a_2)\div 2\rfloor-\min(a_1,a_2)(操作后的对数减去原来就有的对数就是操作中改动的对数)次操作。将二十六种字母的 addadd 加起来,与 kk 取较小值(这就是在不超过操作 kk 次能增加的对数)加上原来就有的对数(min(a1,a2)+min(b1,b2)++min(z1,z2)\min(a_1,a_2)+\min(b_1,b_2)+\dots+\min(z_1,z_2)),这就是最终答案。

Code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int t;
int a[30],b[30];
ll read(){
    ll x=0,f=1;
    char ch;
    ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+ch-'0';
        ch=getchar();
    }
    return x*f;
}
void solve(){
	int n=read(),k=read(),ans=0;
	string s;
	cin>>s;
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<n;i++){
		if(s[i]<='z'&&s[i]>='a') a[s[i]-'a'+1]++;
		else if(s[i]>='A'&&s[i]<='Z') b[s[i]-'A'+1]++;
	}
	for(int i=1;i<=26;i++){
		ans+=min(a[i],b[i]);//操作前就有的分值
		ans+=min(abs(a[i]-b[i])/2,k);//操作后增加的分值
		k-=min(abs(a[i]-b[i])/2,k);//减去该字母耗费的操作数
	}
	cout<<ans<<endl;
}
int main(){
	t=read();
	while(t--){
		solve();
	}
	return 0;
}

CF1800C1&C2 Powering the Hero

洛谷链接(easy version)

洛谷链接(hard version)

Description

简单版和困难版的唯一区别在于 nntt 的数据范围。

桌上有 nn 张牌每张牌都有一个能量值 sis_i,英雄牌的能量值为 00,加分牌的能量值为正整数。

每次从桌上的牌堆顶部拿一张牌直到无牌可拿。

  • 若该牌为加分牌,你可以将其放在加分牌堆的顶部或丢弃此牌。
  • 若该牌为英雄牌,那么加分牌堆堆顶的牌的能量值将赋予该英雄牌,英雄牌加入军队,且该加分牌丢弃。

问军队的总能量值的最大值。

tt 组数据。

Solution

每次取当前还在加分牌堆顶的最大值即可。

例:1187090

若所有加分牌都加入堆的话第一张英雄牌取得的是 7,而当前最大值为 8,明显在取 7时弃牌即可。

例:1187010

将所有加分牌放入堆时,第一张英雄牌的当前最大值为 8,而想要取到只可能弃 7,此时军队最大值为 15,明显不是最优。其实换个角度想,第一张英雄牌取 7,第二张英雄牌取 8,本质相同。

总结,若第 i,j(i<j)i,j(i<j) 两张英雄牌(可以扩展到多张牌),jjii 前面的牌最优,就说明 i,ji,j 中没有加分牌能在前 i1i-1 张牌中在前二大(例子中第二大为 7i,ji,j 中只有 1,取 jj 时最大为 7,实则为 8),否则说明 i,ji,j 中有更大的牌,定为 jj 时最大的牌(因为前 i1i-1 的最大 8已经取走)。

所以满足取当前加分牌堆最大值的结论,即使当时那张英雄牌取不到(例子二),但后面的英雄牌仍能补上。

取最大值用大根堆维护。

时间复杂度:O(nlogn)O(n \log n),明显可以过简单版和困难版。

Code

#include<bits/stdc++.h>
using namespace std;
#define ll long long

int t;
int a[500500];
ll read(){
    ll x=0,f=1;
    char ch;
    ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+ch-'0';
        ch=getchar();
    }
    return x*f;
}
void solve(){
	int n=read();
	long long ans=0;
	priority_queue<int> q;
	for(int i=1;i<=n;i++){
		a[i]=read();
		if(a[i]>0) q.push(a[i]);
		else if(a[i]==0) {
			if(q.size()>0){
				ans+=q.top(),q.pop();//记得弹出
			}
		}
	}
	cout<<ans<<endl;
}
int main(){
	t=read();
	while(t--){
		solve();
	}
	return 0;
}

CF1800D Remove Two Letters

洛谷链接

Description

给定 nn 和一个长度为 nn 的字符串 ss

ss'ss 删去两个连续字符后剩余的字符串,问共有多少个不同的 ss'

tt 组数据。

Solution

例:aabacac

可以发现去掉第二三字母和去掉三四字母是一样的。

我们将整个字符串分成 aabacac三个部分,由于只改动二三四这三个字母,所以第一三部分忽略。删二三时,第二部分变成第四个字母 a,而删三四时,第二部分变成 第二个字母 a,所以如果 si=si+2s_i=s_{i+2},那么删 i,i+1i,i+1i+1,i+2i+1,i+2 时剩余字母相同。

枚举重复的数量,即 si=si+2s_i=s_{i+2} 的数量,再用总数量 s1\left\vert s\right\vert-1 减去重复数量即可。

Code

#include<bits/stdc++.h>
using namespace std;
#define ll long long

int t;
int a[3005];
ll read(){
    ll x=0,f=1;
    char ch;
    ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+ch-'0';
        ch=getchar();
    }
    return x*f;
}
void solve(){
	int n=read(),ans=0;
	string s;
	cin>>s;
	for(int i=2;i<n;i++){
		if(s[i]==s[i-2]) ans++;
	}
	cout<<n-1-ans<<endl;
}
int main(){
	t=read();
	while(t--){
		solve();
	}
	return 0;
}

CF1800E1&E2 Unforgivable Curse

洛谷链接(easy version)

洛谷链接(hard version)

Description

简单版和困难版的唯一区别在于 kk 的数据范围,简单版中,保证 k=3k=3

给定 nnkk,及两个长度为 nn 的字符串 aabb

问能否在通过若干次操作后使 aa 改为 bb

在一次操作中,你可以交换 ai,aj(i<j)a_i,a_j(i<j) 当且仅当 ij=k or k+1\left\vert i-j\right\vert=k\space or\space k+1

TT 组数据。

Solution

我们以 k=3k=3 来找规律。

首先当 n3n\leq3 时,任何字母都无法操作,所以 aabb 要完全相同才可行。

n=4n=4a2,a3a_2,a_3(以一为字符串开始下标)是无法移动的,而 a1,a4a_1,a_4 可以交换。

n=5n=5a3a_3 无法移动,换言之其他字母也无法到 a3a_3。其他的位置可以任意交换:

  • a1a2a_1\rightarrow a_2:先到 a4a_4 再到 a2a_2
  • a1a3 or a4a_1\rightarrow a_3\space or\space a_4:一步到达,其他位置同理。

n=6n=6 时,任意字母可以到达任意位置。

如果 aiai+ja_i\rightarrow a_{i+j},向右移 44 步再往左移 33 步,重复 jj 次即可,如果越界,适量减少重复次数,调整右移左移步数及顺序,显然可以到达任意位置(a5a_5a6a_6 的顺序为 a5a2a6a_5\rightarrow a_2\rightarrow a_6)。aija_{i-j} 同理。

总结规律,只要 aia_i 可以进行操作(ik1i-k\geq 1 并且 i+kni+k\leq n),它就可以移到任意字母,任意字母也可以移到这个位置上。

只需判断那些不能移动的位置上更改前和更改后是否相同。

记得保证该字母在 aa 中出现过,记录每种字母修改前后的数量是否一致即可。

简单版和困难版皆可通过。

Code

#include<bits/stdc++.h>
using namespace std;
#define ll long long

int t;
int vis1[30],vis2[30];
ll read(){
    ll x=0,f=1;
    char ch;
    ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+ch-'0';
        ch=getchar();
    }
    return x*f;
}
void solve(){
	int n=read(),k=read();
	string a,b;
	cin>>a>>b;
	memset(vis1,0,sizeof(vis1));
	memset(vis2,0,sizeof(vis2));
	for(int i=0;i<n;i++){
		vis1[a[i]-'a'+1]++;
		vis2[b[i]-'a'+1]++;
	}
	for(int i=1;i<=26;i++) {
		if(vis1[i]!=vis2[i]){//数量不同无法实现
			cout<<"NO"<<endl;
			return ;
		}
	}
	for(int i=0;i<n;i++){
	    if(i+k>=n&&i-k<0){//无法操作
	        if(a[i]!=b[i]){
	            cout<<"NO"<<endl;
	            return ;
	        }
	    }
	}
	cout<<"YES"<<endl;
}
int main(){
	t=read();
	while(t--){
		solve();
	}
	return 0;
}