1.k8s中的list-watch机制
1.1 list-watc机制的概念运用
Kubernetes 是通过 List-Watch 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。
用户是通过 kubectl 根据配置文件,向 APIServer 发送命令,在 Node 节点上面建立 Pod 和 Container。
APIServer 经过 API 调用,权限控制,调用资源和存储资源的过程,实际上还没有真正开始部署应用。这里需要 Controller Manager、Scheduler 和 kubelet 的协助才能完成整个部署过程。
在 Kubernetes 中,所有部署的信息都会写到 etcd 中保存。实际上 etcd 在存储部署信息的时候,会发送 Create 事件给 APIServer,而 APIServer 会通过监听(Watch)etcd 发过来的事件。其他组件也会监听(Watch)APIServer 发出来的事件。
1.2 根据list-watch机制,pod的创建流程
- 这里有三个 List-Watch,分别是 Controller Manager(运行在 Master),Scheduler(运行在 Master),kubelet(运行在 Node)。 他们在进程已启动就会监听(Watch)APIServer 发出来的事件。
- 用户通过 kubectl 或其他 API 客户端提交请求给 APIServer 来建立一个 Pod 对象副本。
- APIServer 尝试着将 Pod 对象的相关元信息存入 etcd 中,待写入操作执行完成,APIServer 即会返回确认信息至客户端。
- 当 etcd 接受创建 Pod 信息以后,会发送一个 Create 事件给 APIServer。
- 由于 Controller Manager 一直在监听(Watch,通过https的6443端口)APIServer 中的事件。此时 APIServer 接受到了 Create 事件,又会发送给 Controller Manager。
- Controller Manager 在接到 Create 事件以后,调用其中的 Replication Controller 来保证 Node 上面需要创建的副本数量。一旦副本数量少于 RC 中定义的数量,RC 会自动创建副本。总之它是保证副本数量的 Controller(PS:扩容缩容的担当)。
- 在 Controller Manager 创建 Pod 副本以后,APIServer 会在 etcd 中记录这个 Pod 的详细信息。例如 Pod 的副本数,Container 的内容是什么。
- 同样的 etcd 会将创建 Pod 的信息通过事件发送给 APIServer。
- 由于 Scheduler 在监听(Watch)APIServer,并且它在系统中起到了“承上启下”的作用,“承上”是指它负责接收创建的 Pod 事件,为其安排 Node;“启下”是指安置工作完成后,Node 上的 kubelet 进程会接管后继工作,负责 Pod 生命周期中的“下半生”。 换句话说,Scheduler 的作用是将待调度的 Pod 按照调度算法和策略绑定到集群中 Node 上。
- Scheduler 调度完毕以后会更新 Pod 的信息,此时的信息更加丰富了。除了知道 Pod 的副本数量,副本内容。还知道部署到哪个 Node 上面了。并将上面的 Pod 信息更新至 API Server,由 APIServer 更新至 etcd 中,保存起来。
- etcd 将更新成功的事件发送给 APIServer,APIServer 也开始反映此 Pod 对象的调度结果。
- kubelet 是在 Node 上面运行的进程,它也通过 List-Watch 的方式监听(Watch,通过https的6443端口)APIServer 发送的 Pod 更新的事件。kubelet 会尝试在当前节点上调用 Docker 启动容器,并将 Pod 以及容器的结果状态回送至 APIServer。
- APIServer 将 Pod 状态信息存入 etcd 中。在 etcd 确认写入操作成功完成后,APIServer将确认信息发送至相关的 kubelet,事件将通过它被接受。
注意:在创建 Pod 的工作就已经完成了后,为什么 kubelet 还要一直监听呢?原因很简单,假设这个时候 kubectl 发命令,要扩充 Pod 副本数量,那么上面的流程又会触发一遍,kubelet 会根据最新的 Pod 的部署情况调整 Node 的资源。又或者 Pod 副本数量没有发生变化,但是其中的镜像文件升级了,kubelet 也会自动获取最新的镜像文件并且加载。
2. scheduler的调度策略
2.1 scheduler的调度策略的了解
Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。其主要考虑的问题如下:
-
公平:如何保证每个节点都能被分配资源
-
资源高效利用:集群所有资源最大化被使用
-
效率:调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
-
灵活:允许用户根据自己的需求控制调度的逻辑
Sheduler 是作为单独的程序运行的,启动之后会一直监听 APIServer,获取 spec.nodeName 为空的 pod,对每个 pod 都会创建一个 binding,表明该 pod 应该放到哪个节点上。
调度分为几个部分:首先是过滤掉不满足条件的节点,这个过程称为预算策略(predicate);然后对通过的节点按照优先级排序,这个是优选策略(priorities);最后从中选择优先级最高的节点。如果中间任何一步骤有错误,就直接返回错误。
2.2 Scheduler预选(预算)策略的算法
Predicate 有一系列的常见的算法可以使用:
- PodFitsResources:节点上剩余的资源是否大于 pod 请求的资源。
- PodFitsHost:如果 pod 指定了 NodeName,检查节点名称是否和 NodeName 匹配。
- PodFitsHostPorts:节点上已经使用的 port 是否和 pod 申请的 port 冲突。
- PodSelectorMatches:过滤掉和 pod 指定的 label 不匹配的节点。
- NoDiskConflict:已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读。
2.3 Scheduler优选策略的算法
优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。有一系列的常见的优先级选项包括:
- LeastRequestedPriority:通过计算CPU和Memory的使用率来决定权重,使用率越低权重越高。也就是说,这个优先级指标倾向于资源使用比例更低的节点。
- BalancedResourceAllocation:节点上 CPU 和 Memory 使用率越接近,权重越高。这个一般和上面的一起使用,不单独使用。比如 node01 的 CPU 和 Memory 使用率 20:60,node02 的 CPU 和 Memory 使用率 50:50,虽然 node01 的总使用率比 node02 低,但 node02 的 CPU 和 Memory 使用率更接近,从而调度时会优选 node02。
- ImageLocalityPriority:倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高。
通过算法对所有的优先级项目和权重进行计算,得出最终的结果。
总的来说:
- 预选策略 :通过调度算法过滤掉不满足条件的Node节点
- 优选策略 :通过优先级选项给满足调度条件的Node节点进行优先级权重排序,最终选择优先级最高的Node节点来调度Pod
3. k8s中的标签管理及nodeSelector和nodeName的 调度方式
通过上一个知识点我们知道了,pod在分配到node节点是通过预选策略和优选策略完成。这是k8s没有任何调度方式的操作自主进行。当然我们也可以通过认为干扰的方式来影响pod分配到node上的最终结果。(nodeSelector调度和nodeName调度)
3.1 标签管理
(1)获取标签的相关操作信息
kubectl label --help
(2)查看标签信息
格式:kubectl get <资源类型> <资源名称> --show-labels
eg:查看所有node节点的标签
kubectl get nodes --show-labels
(3)增加标签信息
格式:kubectl label <资源类型> <资源名称> key=value
eg:为node增加一个标签
kubectl label node node01 test=a
kubectl label node node02 test=b
(4)修改标签的value值
格式:kubectl label <资源类型> <资源名称> key=value --overwrite
eg:修改node节点上的原有标签value值
kubectl label node node02 test=a --overwrite
(5)删除标签值
格式:kubectl label <资源类型> <资源名称> key-
eg:删除node02节点上的test=a标签
kubectl label node node02 test-
(6)根据标签和资源类型寻找相关的资源名称
格式:kubectl get <资源类型> -l key[=value]
eg:根据test和node资源类型,寻找具体的资源名称
kubectl get node -l test
3.2 nodeName的pod调度方式
kubectl explain pod.spec.nodeName
操作演示:
vim myapp.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp
spec:
replicas: 3
selector:
matchLabels:
app: myapp
template:
metadata:
labels:
app: myapp
spec:
nodeName: node01
containers:
- name: myapp
image: nginx:1.14
ports:
- containerPort: 80
kubectl apply -f myapp.yaml
3.3 nodeSelector 调度方式
kubectl explain pod.spec.nodeSelector
操作演示:
apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp
spec:
replicas: 3
selector:
matchLabels:
app: myapp
template:
metadata:
labels:
app: myapp
spec:
nodeSelector:
test: a
containers:
- name: myapp
image: nginx:1.14
ports:
- containerPort: 80
//查看详细事件(通过事件可以发现要先经过 scheduler 调度分配)
kubectl describe pod myapp-5969ff75d5-5q9c7
4. k8s集群调度之亲和性
对于亲和性,官方文档也有详细的注解:kubernetes.io/zh/docs/con…
关于亲和性的调度方式,可以分为三大类:node的亲和性,pod的亲和性,pod的反亲和性。它们都能起到控制pod分配到node的调度的结果的作用
#查看亲和性的种类
kubectl explain pod.spec.affinity
4.1 node的亲和性
node的亲和一共分为两种调度策略:
- 软策略(preferredDuringSchedulingIgnoredDuringExecution
- 硬策略(requiredDuringSchedulingIgnoredDuringExecution)
#查看你node亲和性的调度策略
kubectl explain pod.spec.affinity.nodeAffinity
(1)node亲和性硬策略的设置测试
#硬策略的设置方式
kubectl explain pod.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms
#硬策略的标签设置方式
kubectl explain pod.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms.matchExpressions
键值运算关系
- In:label 的值在某个列表中
- NotIn:label 的值不在某个列表中
- Gt:label 的值大于某个值
- Lt:label 的值小于某个值
- Exists:某个 label 存在
- DoesNotExist:某个 label 不存在
进行硬策略设置的实验:
实验前,我们分别在node01和node02 添加test=a和test=b的标签
vim pod1.yaml
apiVersion: v1
kind: Pod
metadata:
name: affinity
labels:
app: node-affinity-pod
spec:
containers:
- name: node-affinity-required
image: nginx:1.14
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: test #指定node的标签
operator: NotIn #设置Pod安装到kubernetes.io/hostname的标签值不在values列表中的node上
values:
- a
(2)node亲和性软策略的设置测试
kubectl explain pod.spec.affinity.nodeAffinity.preferredDuringSchedulingIgnoredDuringExecution
kubectl explain pod.spec.affinity.nodeAffinity.preferredDuringSchedulingIgnoredDuringExecution.preference.matchExpressions
进行软策略测试:
依旧以node01和node02的test标签为条件
#生成实验模板
kubectl create deployment test-affinity-prefer --image=nginx:1.14 -o yaml > demo2.yaml
#进行模板的修改
vim demo2.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: test-affinity
labels:
app: test-affinity-prefer
spec:
replicas: 6
selector:
matchLabels:
app: test-affinity-prefer
template:
metadata:
labels:
app: test-affinity-prefer
spec:
containers:
- image: nginx:1.14
imagePullPolicy: IfNotPresent
name: nginx
affinity: #亲和性配置
nodeAffinity: #node节点亲和性配置
preferredDuringSchedulingIgnoredDuringExecution: #软策略
- weight: 100 #权重设置(1-100,100为最高)
preference: #策略的配置
matchExpressions: #配置标签选择
- key: test #标签key的设置
operator: In #标签key与value的关系
values: #value值的设置
- a
(3)软策略与硬策略的结合使用
用demo2进行修改,在node软策略的基础上加上硬策略的限制。
apiVersion: apps/v1
kind: Deployment
metadata:
name: test-affinity
labels:
app: test-affinity-prefer
spec:
replicas: 6
selector:
matchLabels:
app: test-affinity-prefer
template:
metadata:
labels:
app: test-affinity-prefer
spec:
containers:
- image: nginx:1.14
imagePullPolicy: IfNotPresent
name: nginx
affinity:
nodeAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
preference:
matchExpressions:
- key: test
operator: In
values:
- a
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: test
operator: NotIn
values:
- a
- b
4.2 pod的亲和性和反亲和性
与node节点分配不同的是,pod的亲和性是根据拓扑域进行分配。
拓扑域key(topologyKey)一般为指定Pod所在的Node节点的标签的key,如果别的Node节点也具有相同的标签的key和value,那么这些Node节点就和指定Pod所在的Node节点处于同一个拓扑域。根据Pod亲和性所创建的新Pod将会尽可能均衡地分配到同一个拓扑域的Node节点上运行。
eg:假设有个三个节点 node01 node02 node03
pod在node01,node01上有标签 test=a node02 上有标签 test=b node03 上有标签 test=a
则:node01和node03在同一拓扑域,而node02和node01,node03 不在同一拓扑域
调度策略 | 匹配标签 | 操作符 | 拓扑域支持 | 调度目标 |
---|---|---|---|---|
nodeAffinity | 主机 | In, NotIn, Exists,DoesNotExist, Gt, Lt | 否 | 指定主机 |
podAffinity | Pod | In, NotIn, Exists,DoesNotExist | 是 | Pod与指定Pod同一拓扑域 |
podAntiAffinity | Pod | In, NotIn, Exists,DoesNotExist | 是 | Pod与指定Pod不在同一拓扑域 |
(1)pod亲和性的演示操作
apiVersion: v1
kind: Pod
metadata:
name: test-pod-affinity
labels:
app: test-pod-affinity
spec:
containers:
- name: test-affinity-prefer
image: nginx:1.14
affinity:
podAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: test
operator: In
values:
- a
topologyKey: test
(2)pod的反亲和策略演示
apiVersion: v1
kind: Pod
metadata:
name: test-pod-antiaffinity
labels:
app: test-pod-antiaffinity
spec:
containers:
- name: test-antiffinity-prefer
image: nginx:1.14
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: test
operator: In
values:
- a
topologyKey: test
5. k8s中的污点与容忍
5.1 污点与容忍的概念
节点亲和性,是Pod的一种属性(偏好或硬性要求),它使Pod被吸引到一类特定的节点。Taint 则相反,它使节点能够排斥一类特定的 Pod。
污点(Taint) 和 容忍(Toleration) 相互配合,可以用来避免 Pod 被分配到不合适的节点上。每个节点上都可以应用一个或多个 taint ,这表示对于那些不能容忍这些 taint 的 Pod,是不会被该节点接受的。如果将 toleration 应用于 Pod 上,则表示这些 Pod 可以(但不一定)被调度到具有匹配 taint 的节点上。
当前 taint effect 支持如下三个选项:
- NoSchedule:表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上
- PreferNoSchedule:表示 k8s 将尽量避免将 Pod 调度到具有该污点的 Node 上
- NoExecute:表示 k8s 将不会将 Pod 调度到具有该污点的 Node 上,同时会将 Node 上已经存在的 Pod 驱逐出去
5.2 污点的基本管理操作
(1)查看node节点上的污点
格式:kubectl describe nodes <节点名称> | grep Taints
或者是kubectl describe nodes <节点名称> | grep -i taints
eg:查看master01的污点
kubectl describe nodes master01 |grep -i taints
(2) 设置污点
格式kubectl taint node 指定的node key1=value1:NoSchedule
eg:给node01 设置污点进行测试
kubectl taint node node01 abc=a:NoSchedule
(3)清除污点
格式:kubectl taint node 指定的node key:NoSchedule-
eg:清除node01 设置的污点
kubectl taint node node01 abc:NoSchedule-
5.3 面对污点,创建pod资源的容忍设置
vim pod3.yaml
apiVersion: v1
kind: Pod
metadata:
name: myapp01
labels:
app: myapp01
spec:
containers:
- name: with-node-affinity
image: nginx:1.14
tolerations:
- key: "abc"
operator: "Equal"
value: "a"
effect: "NoExecute"
tolerationSeconds: 3600
#其中的 key、vaule、effect 都要与 Node 上设置的 taint 保持一致
#operator 的值为 Exists 将会忽略 value 值,即存在即可
#tolerationSeconds 用于描述当 Pod 需要被驱逐时可以在 Node 上继续保留运行的时间
过程描述:已知在node01设置了一个驱逐的污点,pod创建依据上面的配置。会现在node01上运行一个小时(容忍),然后被驱逐。
5.4 污点与容忍的其它注意事项
(1)当不指定 key 值时,表示容忍所有的污点 key
tolerations:
- operator: "Exists"
(2)当不指定 effect 值时,表示容忍所有的污点作用
tolerations:
- key: "key"
operator: "Exists"
(3)有多个 Master 存在时,防止资源浪费,可以如下设置
kubectl taint node Master-Name node-role.kubernetes.io/master=:PreferNoSchedule
//如果某个 Node 更新升级系统组件,为了防止业务长时间中断,可以先在该 Node 设置 NoExecute 污点,把该 Node 上的 Pod 都驱逐出去
kubectl taint node node01 check=mycheck:NoExecute
//此时如果别的 Node 资源不够用,可临时给 Master 设置 PreferNoSchedule 污点,让 Pod 可在 Master 上临时创建
kubectl taint node master node-role.kubernetes.io/master=:PreferNoSchedule
//待所有 Node 的更新操作都完成后,再去除污点
kubectl taint node node01 check=mycheck:NoExecute-
5.5 cordon 和 drain
##对节点执行维护操作:
kubectl get nodes
//将 Node 标记为不可调度的状态,这样就不会让新创建的 Pod 在此 Node 上运行
kubectl cordon <NODE_NAME> #该node将会变为SchedulingDisabled状态
//kubectl drain 可以让 Node 节点开始释放所有 pod,并且不接收新的 pod 进程。drain 本意排水,意思是将出问题的 Node 下的 Pod 转移到其它 Node 下运行
kubectl drain <NODE_NAME> --ignore-daemonsets --delete-emptydir-data --force
--ignore-daemonsets:无视 DaemonSet 管理下的 Pod。
--delete-emptydir-data:如果有 mount local volume 的 pod,会强制杀掉该 pod。
--force:强制释放不是控制器管理的 Pod。
注:执行 drain 命令,会自动做了两件事情:
(1)设定此 node 为不可调度状态(cordon)
(2)evict(驱逐)了 Pod
//kubectl uncordon 将 Node 标记为可调度的状态
kubectl uncordon <NODE_NAME>
6. pod启动阶段的状态解读与排错技巧
6.1 pod启动阶段的状态(相位 phase)
(1)启动步骤
Pod 创建完之后,一直到持久运行起来,中间有很多步骤,也就有很多出错的可能,因此会有很多不同的状态。
一般来说,pod 这个过程包含以下几个步骤:
- 调度到某台 node 上。kubernetes 根据一定的优先级算法选择一台 node 节点将其作为 Pod 运 行 的 node
- 拉取镜像
- 挂载存储配置等
- 运行起来。如果有健康检查,会根据检查的结果来设置其状态。
(2)phase 的可能状态
- Pending:表示APIServer创建了Pod资源对象并已经存入了etcd中,但是它并未被调度完成(比如还没有调度到某台node上),或者仍然处于从仓库下载镜像的过程中。
- Running:Pod已经被调度到某节点之上,并且Pod中所有容器都已经被kubelet创建。至少有一个容器正在运行,或者正处于启动或者重启状态(也就是说Running状态下的Pod不一定能被正常访问)。
- Succeeded:有些pod不是长久运行的,比如job、cronjob,一段时间后Pod中的所有容器都被成功终止,并且不会再重启。需要反馈任务执行的结果。
- Failed:Pod中的所有容器都已终止了,并且至少有一个容器是因为失败终止。也就是说,容器以非0状态退出或者被系统终止,比如 command 写的有问题。
- Unknown:表示无法读取 Pod 状态,通常是 kube-controller-manager 无法与 Pod 通信。Pod 所在的 Node 出了问题或失联,从而导致 Pod 的状态为 Unknow
如何删除 Unknown 状态的 Pod ?
- 从集群中删除有问题的 Node。使用公有云时,kube-controller-manager 会在 VM 删除后自动删除对应的 Node。 而在物理机部署的集群中,需要管理员手动删除 Node(kubectl delete node <node_name>)。
- 被动等待 Node 恢复正常,Kubelet 会重新跟 kube-apiserver 通信确认这些 Pod 的期待状态,进而再决定删除或者继续运行这些 Pod。
- 主动删除 Pod,通过执行 kubectl delete pod <pod_name> --grace-period=0 --force 强制删除 Pod。但是这里需要注意的是,除非明确知道 Pod 的确处于停止状态(比如 Node 所在 VM 或物理机已经关机),否则不建议使用该方法。特别是 StatefulSet 管理的 Pod,强制删除容易导致脑裂或者数据丢失等问题。
6.2 k8集群故障排除步骤
kubectl get pods/nodes 查看Pod/Node节点的状态提示
kubectl describe 查看相关资源的详细事件信息
kubectl logs 查看Pod容器的进程日志
kubectl exec -it 进入Pod容器查看容器的一些状态
journalctl -u kubelet 查看kubelet进程日志