初识-分布式理论 | 青训营笔记

136 阅读14分钟

这是我参与「第五届青训营」伴学笔记创作活动的第 9 天

零、前言

前排提示:

如果已经掌握这部分内容的读者,或者在原文看完的读者,可以直接跳转到"三、课后实践部分"

本文记录和整理了本人在跟随字节青训营学习的一些我个人感觉比较重要的内容和知识,也有一部分内容是我认为自己比较难理解或记忆的,也一并记录于此文。

撰写本文的目的主要是方便我自己的复习和查阅,倘若各位读者有与我相似的问题,也可以参考之,如果对各位有帮助那就是我莫大的荣幸,也期望各位不吝赐教,多多指出我的问题,可以在下方留言或者私信我。


一、课程大纲:

概述

  • 什么是分布式?
  • Why-How-What
  • 常见的分布式系统

系统模型

  • 故障模型
  • 拜占庭将军问题
  • 共识和一致性
  • 时间和事件顺序

理论基础

  • CAP理论
  • ACID理论
  • BASE理论

分布式事务

  • 两阶段提交
  • 三阶段提交
  • MVCC

共识协议

  • Quorum NWR模型
  • RAFT协议
  • Paxos协议

分布式实践

  • MapReduce
  • 分布式KV

二、分布式理论

注:以下内容来自青训营学习资料,笔者做了部分修改与补充

原文链接:【后端专场 学习资料三】第五届字节跳动青训营 - 掘金 (juejin.cn)

概述

  • 什么是分布式?

    • 分布式系统定义:跨多个节点的计算机程序的集合
    • 使用分布式系统的五大优势:去中心化、低成本、弹性、资源共享、可靠性高
    • 分布式系统的挑战:故障、网络、环境、安全
  • Why-How-What

    • 使用者视角:大规模计算存储的述求
    • 学习者视角:后端开发必备技能
  • 常见的分布式系统

    • 分布式存储:GFS、Ceph、HDFS、Zookeeper
    • 分布式数据库:Spanner、TiDB、HBase、MangoDB
    • 分布式计算:Hadoop、YARN、Spark

系统模型

故障模型

  • 六种故障模型,从处理的难易程度分类

    • Byzantine failure:节点可以任意篡改发送给其他节点的数据,是最难处理的故障
    • Authentication detectable byzantine failure (ADB):节点可以篡改数据,但不能伪造其他节点的数据
    • Performance failure:节点未在特定时间段内收到数据,即时间太早或太晚
    • Omission failure:节点收到数据的时间无限晚,即收不到数据
    • Crash failure:节点停止响应,持续性的故障
    • Fail-stop failure:错误可检测,是最容易处理的故障
  • 故障模型举例,按照模型分类

    • 磁盘、主板、交换机、网络分区、cpu、内存、线缆、电源等故障详细说明

拜占庭将军问题

  • 两将军问题

    • 定义:

      • 两支军队的将军只能派信使穿越敌方领土互相通信,以此约定进攻时间。该问题希望求解如何在两名将军派出的任何信使都可能被俘虏的情况下,就进攻时间达成共识
    • 结论:

      • 两将军问题是被证实无解的电脑通信问题,两支军队理论上永远无法达成共识
    • TCP是两将军问题的一个工程解

  • 三将军问题:

    • 两个“忠将”A和B,一个“叛徒”C,互相传递消息,消息可能丢失,也可能被篡改,当有一个将军是“叛徒”(即出现拜占庭故障)时,整个系统无法达成一致。
    • 由于“叛徒”C的存在,将军A和将军B获得不同的信息。这样将军A获得2票进攻1票撤退的信息,将军B获得1票进攻2票撤退的信息,产生了不一致
  • 四将军问题:

    • 将军D作为消息分发中枢,约定如果没收到消息则执行撤退

    • 步骤:

      • 如果D为“叛徒”,ABC无论收到任何消息,总能达成一致
      • D为“忠将”,ABC有2人将D的消息进行正确的传递,同样能保证最终决策符合大多数。
    • 进而能够证明,当有3m+1个将军,m个“叛徒”时,可以进行m轮协商,最终达成一致

共识和一致性

  • 不同客户端A和B看到客户端C写入,因为时机的不同,产生数据读取的偏差。引导出最终一致性的详细说明
  • 要保证所有客户端看到相同的值,需要多节点进行“协商”,达成共识,来保证线性一致性
  • 一致性和可用性是对矛盾

时间和事件顺序略


理论基础

CAP理论

  • CAP的定义,分别代表一致性、可用性、分区容错性。三者无法同时达到

  • CAP诞生了三类系统:

    • CA系统:传统数据库的代表
    • AP系统:放弃强一致性,保证高可用,不少nosql存储系统采用
    • CP系统:放弃可用性,保证数据一致性
  • 举例说明两个分布式进程之间同步数据,当出现故障的时候,如何选择不同的CAP系统,以及带来的影响

    • CP系统:故障发生时,为了避免读到不一致的数据,可能拒绝访问
    • AP系统:故障发生时,为了保证可用性,允许不同进程读到不同的数据
  • 针对故障场景,可以通过故障转移的方式,做一个相对较优的解决方式:

    • 允许一个进程作为Master,其他进程作为Backup,当故障时将请求转移给Backup进行处理

ACID理论

  • ACID理论是针对CA系统而言的,通常在数据库中具有广泛意义

  • 事务是数据库系统中非常重要的概念,它是数据库管理系统执行过程中的一个逻辑单元,它能够保证一个事务中的所有操作要么全部执行,要么全都不执行

  • 数据库事务拥有四个特性ACID:

    原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)

BASE理论

BASE理论是针对AP系统而言的,其来源于对大型互联网分布式实践的总结

  • Basically Available(基本可用):假设系统,出现了不可预知的故障,但还是能用
  • Soft state(软状态):允许系统中的数据存在中间状态,并认为该状态不影响系统的整体可用性
  • Eventually consistent(最终一致性):数据最终一定能够达到一致的状态

分布式事务

二阶段提交

  • 定义:

    • 二阶段提交(Two-phase Commit):为了使基于分布式系统架构下的所有节点在进行事务提交时保持一致性而设计的一种演算法。
  • 三个假设:

    • 协调者和参与者进行通信
    • 预写式日志被保持在可靠的存储设备上
    • 所有节点不会永久性损坏,即使损坏后仍然可以恢复
  • 正常流程:Prepare阶段和Commit阶段

  • 异常流程:Prepare阶段失败 -> 回滚;协调者宕机 -> 重新启用新的协调者;双故障重启 -> 数据库管理员介入

  • 两阶段提交需解决的问题:

    • 性能问题:需要多次网络通信,资源需要等待并锁定
    • 新协调者:如何确定状态选出新协调者
    • Commit阶段网络分区带来的数据不一致:非所有节点都收到Commit请求
  • 两个思考:

    • 日志被保存在「可靠」的存储设备上。如何保证这一点?
    • 参与者Commit了,但Ack信息协调者没收到。怎么办?

三阶段提交

  • 针对两阶段提交的补充,将两阶段提交中的Prepare阶段,拆成两部分:CanCommit和PreCommit机制
  • CanCommit阶段:询问是否可以执行;PreCommit阶段:重新确认是否可以执行
  • DoCommit阶段:向所有人提交事务

MVCC

  • MVCC:多版本并发控制的方法。维持一个数据的多个版本使读写操作没有冲突。所以既不会阻塞写,也不阻塞读。提高并发性能的同时也解决了脏读的问题。

  • 悲观锁和乐观锁

    • 悲观锁:操作数据时直接把数据锁住,直到操作完成后才会释放锁;上锁期间其他人不能修改数据
    • 乐观锁:不会上锁,只是在执行更新时判断别人是否修改数据,只有冲突时才放弃操作
  • 版本的选取:使用物理时钟或逻辑时钟

    • 物理时钟:提供TrueTime API,有Master节点维持一个绝对时间,保证各个服务器之间时钟误差控制在ϵ内,通常ϵ<7ms。
    • 逻辑时钟:中心化授时的方式--时间戳预言机(TSO),好处是无需硬件的支持

共识协议

Quorum NWR模型

  • 三要素:

    • N:在分布式存储系统中,有多少份备份数据
    • W:代表一次成功的更新操作要求至少有w份数据写入成功
    • R: 代表一次成功的读数据操作要求至少有R份数据成功读取
    • 为了保证强一致性,需要保证 W+R>N
  • Quorum NWR模型将CAP的选择交给用户,是一种简化版的一致性模型

  • 引起的并发更新问题

    • 如果允许数据被覆盖,则并发更新容易引起一致性问题

RAFT协议

  • 概述

    • Raft协议是一种分布式一致性算法(共识算法),即使出现部分节点故障,网络延时等情况,也不影响各节点,进而提高系统的整体可用性。Raft是使用较为广泛的分布式协议。
  • 三种角色

    • Leader - 领导者:Leader 负责处理所有的客户端请求,并向Follower同步请求日志,当日志同步到大多数节点上后,通知Follower提交日志
    • Follower - 跟随者:接受并持久化Leader同步的日志,在Leader告知日志可以提交后,提交日志
    • Candidate - 备选者:Leader选举过程中的临时角色。向其他节点发送请求投票信息
  • 四种定义:

    • Log(日志):节点之间同步的信息,以只追加写的方式进行同步,解决了数据被覆盖的问题
    • Term(任期号):单调递增,每个Term内最多只有一个Leader
    • Committed:日志被复制到多数派节点,即可认为已经被提交
    • Applied:日志被应用到本地状态机:执行了log中命令,修改了内存状态
  • 状态转移:

    • img
  • Leader选举过程:

    • 初始全部为Follower

    • Current Term + 1

    • 选举自己

    • 向其它参与者发起RequestVote请求,retry直到

      • 收到多数派请求,成为Leader,并发送心跳
      • 收到其它Leader的请求,转为Follower,更新自己的Term
      • 收到部分,但未达到多数派,选举超时,随机timeout开始下一轮
  • Log Replication过程:

    • 新Leader产生,Leader和Follower不同步,Leader强制覆盖Followers的不同步的日志
  • 切主:当Leader出现问题时,就需要进行重新选举

    • Leader发现失去Follower的响应,失去Leader身份
    • 两个Follower之间一段时间未收到心跳,重新进行选举,选出新的Leader,此时发生了切主
    • Leader自杀重启,以Follower的身份加入进来
  • Stale读:

    • 发生Leader切换,old leader收到了读请求。如果直接响应,可能会有Stale Read

Paxos协议

  • Paxos算法与RAFT算法区别:

    • Multi-Paxos 可以并发修改日志,而Raft写日志操作必须是连续的
    • Multi-Paxos 可以随机选主,不必最新最全的节点当选Leader
  • 优劣势

    • 优势:写入并发性能高,所有节点都能写
    • 劣势:没有一个节点有完整的最新的数据,恢复流程复杂,需要同步历史记录

三、课后实践部分

分布式实践

MapReduce

Q:计一个简易的MapReduce系统,思考如何应对故障?

A:

设计一个简易的MapReduce系统,分为三个部分:Master节点、Worker节点、Data节点。

  1. Master节点负责管理整个系统的任务分配和状态监控。
  2. Worker节点负责执行具体的Map和Reduce任务。
  3. Data节点负责存储原始数据和中间结果。

应对故障:

  1. Master节点的故障:可以通过多主备的方式来应对,在Master节点宕机后,另一个备用节点会自动接管Master节点的职责。
  2. Worker节点的故障:可以通过重新分配任务的方式来应对,在Worker节点宕机后,Master节点会重新分配该节点上的任务。
  3. Data节点的故障:可以通过数据备份和数据迁移的方式来应对,在Data节点宕机后,将备份的数据还原到新的Data节点上。

分布式KV

Q:设计一个简易的分布式键值系统,要求具备弹性的能力和达成线性一致。

A:

设计思路与要点:

  • 采用一致性哈希算法对键进行分片,将键值对映射到多个节点上。
  • 采用复制机制,每个节点对应的键值对有多份副本,保证数据可靠性。
  • 增加或减少节点时重新计算节点间的映射关系,保证弹性扩展。
  • 采用 Paxos 等共识算法保证多副本之间的一致性。

故障策略:

  • 对于单个节点的故障,通过副本机制实现容错。
  • 对于整个系统的故障,采用容错机制,如 master-slave 或者 leader-follower 模式,在故障时自动进行故障转移。
  • 对于网络分区,采用 分布式系统的容错机制,例如本地一致性协议,来保证系统的可用性。

课后问题Answer(仅供参考):

  1. 分布式系统

    • 优势:可扩展性、高可用性、冗余性、容错性。
    • 挑战:复杂性、性能、数据一致性、安全性。
  2. 两将军问题理论上永远达不成共识是因为没有确定哪个将军是“好的” ,在分布式环境中可能会出现“恶意将军”的情况,因此无法达成共识。

  3. TCP采用三次握手是因为这样可以确保数据传输的可靠性和安全性

    • 第一次握手是为了确认连接
    • 第二次握手是为了确认收到第一次握手的确认
    • 第三次握手是为了确认第二次握手已经收到
  4. 在四将军问题中,增加1轮协商就可以对抗拜占庭故障是因为增加1轮协商可以消除拜占庭将军的影响,因此可以达成共识。

  5. 最终一致性是指所有节点最终都会达成一致的数据状态线性一致性是指在分布式系统中所有节点的操作顺序是确定的

  6. CAP理论中,可用性和一致性是矛盾的。可用性要求系统能够尽可能快地响应请求,而一致性要求所有节点的数据在某一时刻是相同的。在分布式系统中,如果要求高可用性,可能会牺牲一致性;如果要求高一致性,可能会牺牲可用性。

  7. 数据库里的一致性指的是数据库中的数据满足事务的ACID特性,而分布式系统中的一致性指的是在分布式环境中多个节点上的数据是相同的

  8. 两阶段提交中,当事务超时或者其他问题导致事务无法完成时,需要数据库管理员介入。

  9. 三阶段提交缓解了两阶段提交中的超时问题和单点故障问题

  10. 乐观锁适合在读多写少的场景中使用,而悲观锁适合在读少写多的场景中使用。

  11. 在共识协议中,允许数据被覆盖会带来数据一致性问题是因为不同的节点可能会有不同的数据版本,导致数据不一致。

  12. RAFT协议会使用日志编号(Log Index)和日志任期(Log Term)来区分不同的日志条目。在这种情况下,新的日志条目会具有更高的日志任期,并且会被其他节点接受并更新。而先前的日志条目将被拒绝并丢弃。

  13. 在RAFT协议中,Stale读是由于读取数据的客户端连接到的是过时的副本上,而不是当前最新的副本上。这可能是由于网络问题导致的。为了解决Stale读问题,可以在客户端上实现读请求重试机制,以确保客户端连接到的是当前最新的副本上。


THE END

image.png