Metal每日分享,颜色转换滤镜效果

1,737 阅读2分钟

「这是我参与2022首次更文挑战的第4天,活动详情查看:2022首次更文挑战

本案例的目的是理解如何用Metal实现像素颜色转换滤镜,通过对像素颜色的不同读取方式获取到相应像素颜色,灰度图移除场景中除了黑白灰以外所有的颜色,让整个图像灰度化;


Demo

对照图

invertbgrabrga
WX20221125-165057.pngWX20221125-164833.pngWX20221125-165018.png
gbragrbarbga
WX20221125-165138.pngWX20221125-165151.pngWX20221125-165213.png

实操代码

// 转成灰度图滤镜
let filter = C7ColorConvert(with: .gray)

// 方案1:
let dest = BoxxIO.init(element: originImage, filter: filter)
ImageView.image = try? dest.output()

dest.filters.forEach {
    NSLog("%@", "\($0.parameterDescription)")
}

// 方案2:
ImageView.image = try? originImage.make(filter: filter)

// 方案3:
ImageView.image = originImage ->> filter

实现原理

  • 过滤器

这款滤镜采用并行计算编码器设计.compute(kernel: type.rawValue)

/// 颜色通道`RGB`位置转换
public struct C7ColorConvert: C7FilterProtocol {
    
    public enum ColorType: String, CaseIterable {
        case invert = "C7ColorInvert"
        case gray = "C7Color2Gray"
        case bgra = "C7Color2BGRA"
        case brga = "C7Color2BRGA"
        case gbra = "C7Color2GBRA"
        case grba = "C7Color2GRBA"
        case rbga = "C7Color2RBGA"
    }
    
    private let type: ColorType
    
    public var modifier: Modifier {
        return .compute(kernel: type.rawValue)
    }
    
    public init(with type: ColorType) {
        self.type = type
    }
}
  • 着色器

取出像素rgb值,然后根据对应像素颜色;灰度图则是取所有的颜色分量,将它们加权或平均;

// 颜色反转,1 - rgb
kernel void C7ColorInvert(texture2d<half, access::write> outputTexture [[texture(0)]],
                          texture2d<half, access::read> inputTexture [[texture(1)]],
                          uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    
    const half4 outColor(1.0h - inColor.rgb, inColor.a);
    
    outputTexture.write(outColor, grid);
}

// 转灰度图
kernel void C7Color2Gray(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    
    const half3 kRec709Luma = half3(0.2126, 0.7152, 0.0722);
    const half gray = dot(inColor.rgb, kRec709Luma);
    const half4 outColor = half4(half3(gray), 1.0h);
    
    outputTexture.write(outColor, grid);
}

kernel void C7Color2BGRA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    
    const half4 outColor(inColor.bgr, inColor.a);
    
    outputTexture.write(outColor, grid);
}

kernel void C7Color2BRGA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    
    const half4 outColor(inColor.brg, inColor.a);
    
    outputTexture.write(outColor, grid);
}

kernel void C7Color2GBRA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    
    const half4 outColor(inColor.gbr, inColor.a);
    
    outputTexture.write(outColor, grid);
}

kernel void C7Color2GRBA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    
    const half4 outColor(inColor.grb, inColor.a);
    
    outputTexture.write(outColor, grid);
}

kernel void C7Color2RBGA(texture2d<half, access::write> outputTexture [[texture(0)]],
                         texture2d<half, access::read> inputTexture [[texture(1)]],
                         uint2 grid [[thread_position_in_grid]]) {
    const half4 inColor = inputTexture.read(grid);
    
    const half4 outColor(inColor.rbg, inColor.a);
    
    outputTexture.write(outColor, grid);
}
  • 权值法
const half3 kRec709Luma = half3(0.2126, 0.7152, 0.0722);
const half gray = dot(inColor.rgb, kRec709Luma);
const half4 outColor = half4(half3(gray), 1.0h);
  • 平均值法
const float color = (inColor.r + inColor.g + inColor.b) / 3.0;
const half4 outColor = half4(color, color, color, 1.0h);

总结:
一般由于人眼对不同颜色的敏感度不一样,所以三种颜色值的权重不一样,一般来说绿色最高,红色其次,蓝色最低,最合理的取值分别为Wr = 30%,Wg = 59%,Wb = 11%,所以权值法相对效果更好一点。

最后

  • 关于颜色转换滤镜介绍与设计到此为止吧。
  • 慢慢再补充其他相关滤镜,喜欢就给我点个星🌟吧。

✌️.