不定方程(二)系数为正数的二元一次不定方程的非负解和正解数量

152 阅读1分钟

持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第26天,点击查看活动详情

上一篇文章我们介绍了系数为正数的二元一次不定方程的非负解和正解数量,接下来我们对结论进行论证:

定理

对于不定方程 a1×x1+a2×x2=ca_1\times x_1+a_2\times x_2=c,设 a1,a2,ca_1,a_2,c 均为正整数,(a1,a2)=1(a_1,a_2)=1,那么当 c>a1a2a1a2c>a_1a_2-a_1-a_2 时,不定方程 a1x1+a2x2=ca_1x_1+a_2x_2=c 有非负解,解数等于 [c/(a1a2)][c/(a_1a_2)][c/(a1a2)]+1[c/(a_1a_2)]+1。当 c=a1a2a1a2c=a_1a_2-a_1-a_2 时,不定方程没有非负解。

证明

因为 (a1,a2)=1(a_1,a_2)=1,所以上述方程必定有解。

x1,0,x2,0x_{1,0},x_{2,0} 是方程的一组特解,由 a1×x1+a2×x2=ca_1\times x_1+a_2\times x_2=c 的方程通解为

{x1=x1,0+a2×t,x2=x2,0a1×t,\begin{cases} x_1=x_{1,0}+a_2\times t, \\ x_2=x_{2,0}-a_1\times t, \end{cases}

该方程的非负解应满足:

  • x1,0+a2×t0x_{1,0}+a_2\times t\ge 0
  • x2,0a1×t0x_{2,0}-a_1\times t\ge 0

解得:x1,0a2tx2,0a1-\frac{x_{1,0}}{a_2}\le t \le \frac{x_{2,0}}{a_1}

即:[x1,0a2]{x1,0a2}t[x2,0a1]+{x2,0a1}-[\frac{x_{1,0}}{a_2}]-\{\frac{x_{1,0}}{a_2}\}\le t \le [\frac{x_{2,0}}{a_1}]+\{\frac{x_{2,0}}{a_1}\}

因为 tt 是整数,所以上式等同于 [x1,0a2]t[x2,0a1]-[\frac{x_{1,0}}{a_2}]\le t \le [\frac{x_{2,0}}{a_1}]

因此 tt 合法的取值有 N0=[x2,0a1]([x1,0a2])+1N_0=[\frac{x_{2,0}}{a_1}]-(-[\frac{x_{1,0}}{a_2}])+1,即 =[x2,0a1]+[x1,0a2]+1=[\frac{x_{2,0}}{a_1}]+[\frac{x_{1,0}}{a_2}]+1

可以将 N0N_0 转化为以下形式:

N0=[x2,0a1+x1,0a2]+1+{x2,0a1+x1,0a2}{x2,0a1}{x1,0a2}N_0=[\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}]+1+\{\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}\}-\{\frac{x_{2,0}}{a_1}\}-\{\frac{x_{1,0}}{a_2}\}

理由如下:

  • 如果 {x2,0a1}+{x1,0a2}<1\{\frac{x_{2,0}}{a_1}\}+\{\frac{x_{1,0}}{a_2}\}<1,则
{[x2,0a1+x1,0a2]=[x2,0a1]+[x1,0a2]{x2,0a1+x1,0a2}{x2,0a1}{x1,0a2}=0\begin{cases} [\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}]=[\frac{x_{2,0}}{a_1}]+[\frac{x_{1,0}}{a_2}]\\ \{\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}\}-\{\frac{x_{2,0}}{a_1}\}-\{\frac{x_{1,0}}{a_2}\}=0 \end{cases}
  • 否则
{[x2,0a1+x1,0a2]=[x2,0a1]+[x1,0a2]+1{x2,0a1+x1,0a2}{x2,0a1}{x1,0a2}=1\begin{cases} [\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}]=[\frac{x_{2,0}}{a_1}]+[\frac{x_{1,0}}{a_2}]+1\\ \{\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}\}-\{\frac{x_{2,0}}{a_1}\}-\{\frac{x_{1,0}}{a_2}\}=-1 \end{cases}

所以

N0=[x2,0a1+x1,0a2]+(1+{x2,0a1+x1,0a2}{x2,0a1}{x1,0a2})N_0=[\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}]+(1+\{\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}\}-\{\frac{x_{2,0}}{a_1}\}-\{\frac{x_{1,0}}{a_2}\})

所以

[x2,0a1+x1,0a2]N0[x2,0a1+x1,0a2]+1[\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}]\le N_0\le [\frac{x_{2,0}}{a_1}+\frac{x_{1,0}}{a_2}]+1

又因为 x1,0,x2,0x_{1,0},x_{2,0} 是方程的一组特解,所以

x1,0a2+x2,0a1=ca1a2\frac{x_{1,0}}{a_2}+\frac{x_{2,0}}{a_1}=\frac{c}{a_1a_2}

所以解数 N0N_0 等于 [c/(a1a2)][c/(a_1a_2)][c/(a1a2)]+1[c/(a_1a_2)]+1