Kotlin | 这些隐藏的内存陷阱,你应该熟记于心

3,954 阅读13分钟

Hi, 你好,很高兴见到你 👋

技术无止境,大家1024快乐。🏃🏻

持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第2天,点击查看活动详情

引言

Kotlin 是一个非常 yes 的语言,从 null安全 ,支持 方法扩展属性扩展,到 内联方法内联类 等,使用Kotlin变得越来越简单舒服。但编程从来不是一件简单的工作,所有简洁都是建立在复杂的底层实现上。那些看似简单的kt代码,内部往往隐藏着不容忽视的内存开销。

介于此,本篇将根据个人开发经验,聊一聊 Kotlin 中那些隐藏的内存陷阱,也希望每一个同学都能在 性能优雅 之间找到合适的平衡。

本篇定位简单🔖,主要通过示例+相应字节码分析的方式,对日常开发非常有帮助。

导航

学完本篇,你将了解到以下内容:

  1. 密封类构造函数传值的使用细节;
  2. 内联函数,你应该注意的地方;
  3. 伴生对象隐藏的性能问题;
  4. lazy, 没你想的那么简单;
  5. apply!= 构建者模式;
  6. 关于 arrayOf() 的使用细节。

好了,让我们开始吧! 🐊

密封类的小细节

密封类用来表示受限的类继承结构:当一个值为有限几种的类型、而不能有任何其他类型时。在某种意义上,他们是枚举类的扩展:枚举类型的值集合也是受限的,但每个枚举常量只存在一个实例,而密封类的一个子类可以有可包含状态的多个实例。摘自Kotlin中文文档

关于它用法,我们具体不再做赘述。

密封类虽然非常实用,经常能成为我们多type的绝佳搭配,但其中却藏着一些使用的小细节,比如 构造函数传值所导致的损耗问题。

错误示例

image.png 如题, 我们有一个公用的属性 sum ,为了便于复用,我们将其抽离到 Fruit 类构造函数中,让子类便于初始化时传入,而不用重复显式声明。

上述代码看着似乎没什么问题?按照传统的操作习惯,我们也很容易写出这种代码。

如果我们此时来看一下字节码:

image-20221022080336140

不难发现,无论是子类Apple还是父类Fruit,他们都生成了 getSum()setSum() 方法 与 sum 字段,而且,父类的 sum 完全处于浪费阶段,我们根本没法用到。😵‍💫

显然这并不是我们愿意看到的,我们接下来对其进行改造一下。

改造实践

我们对上述示例进行稍微改造,如下所示:

image.png 如题,我们将sum变量定义为了一个抽象变量,从而让子类自行实现。对比字节码可以发现,相比最开始的示例,我们的父类 Fruit 中减少了一个 sum 变量的损耗。


那有没有方法能不能把 getsum()setSum() 也一起移除呢?🙅‍♂️

答案是可以,我们利用 接口 改造即可,如下所示:

image-20221018100240436

如上所示,我们增加了一个名为 IFruit 的接口,并让 密封父类 实现了这个接口,子类默认在构造函数中实现该属性即可。

观察字节码可发现,我们的父类一干二净,无论是从包大小还是性能,我们都避免了没必要的损耗。

内联很好,但别太长

inline ,翻译过来为 内联 ,在 Kotlin 中,一般建议用于 高阶函数 中,目的是用来弥补其运行时的 额外开销

其原理也比较简单,在调用时将我们的代码移动到调用处使用,从而降低方法调用时的 栈帧 层级。

栈帧: 指的是虚拟机在进行方法调用和方法执行时的数据结构,每一个栈帧里都包含了相应的数据,比如 局部参数,操作数栈等等。

Jvm在执行方法时,每执行一个方法会产生一个栈帧,随后将其保存到我们当前线程所对应的栈里,方法执行完毕时再将此方法出栈,

所以内联后就相当于省了一个栈帧调用。

如果上述描述中,你只记住了后半句,降低栈帧 ,那么此时你可能已经陷入了一个使用陷阱?

错误示例

如下截图中所示,我们随便创建了一个方法,并增加了 inline 关键字:

image-20221012230619100

观察截图会发现,此时IDE已经给出了提示,它建议你移除 inline , Why? 为什么呢?🥲

不是说内联可以提高性能吗,那么不应该任何方法都应该加 inline 提高性能吗?(就是这么倔强🤌🏼)

上面我们提到了,内联是会将代码移动到调用处,降低 一层栈帧,但这个性能提升真的大吗?

再仔细想想,移动到调用处,移动到调用处。这是什么概念呢?

假设我们某个方法里代码只有两行(我想不会有人会某个方法只有一行吧🥲),这个方法又被好几处调用,内联是提高了调用性能,毕竟节省了一次栈帧,再加上方法行数少(暂时抛弃虚拟机优化这个底层条件)。

但如果方法里代码有几十行?每次调用都会把代码内联过来,那调用处岂不💥,带来的包大小影响某种程度上要比内联成本更高😵‍💫!

如下图所示,我们对上述示例做一个论证:

image-20221012232807919

Jvm: 我谢谢你。

推荐示例

我们在文章最开始提到了,Kotlin inline ,一般建议用于 高阶函数(lambda) 中。为什么呢?

如下示例:

image-20221013094634526

转成字节码后,可以发现,tryKtx() 被创建为了一个匿名内部类 (Simple$test|1) 。每次调用时,相当于需要创建匿名类的实例对象,从而导致二次调用的性能损耗。

那如果我们给其增加 inline 呢?🤖,反编译后相应的 java代码 如下:

image-20221013100057206

具体对比图如上所示,不难发现,我们的调用处已经被替换为原方法,相应的 lambda 也被消除了,从而显著减少了性能损耗。

Tips

如果查看官方库相应的代码,如下所示,比如 with :

image.png

不难发现,inline 的大多数场景仅且在 高阶函数 并且 方法行数较短 时适用。因为对于普通方法,jvm本身对其就会进行优化,所以 inline 在普通方法上的的意义几乎聊胜于无。

总结如下:

  • 因为内联函数会将方法函数移动到调用处,会增加调用处的代码量,所以对于较长的方法应该避免使用
  • 内联函数应该用于使用了 高阶函数(lambda) 的方法,而不是普通方法。

伴生对象,也许真的不需要

Kotlin 中,我们不能像 Java 一样,随便定义一个静态方法或者静态属性。此时 companion object(伴生对象)就会派上用场。

我们常常会用于定义一个 key 或者 TAG ,类似于我们在 Java 中定义一个静态的 Key。其使用起来也很简单,如下所示:

class Book {
    companion object {
        val SUM_MAX: Int = 13
    }
}

这是一段普通的代码,我们在 Book 类中增加了一个伴生对象,其中有一个静态的字段 SUM_MAX。

上述代码看着似乎没什么问题,但如果我们将其转为字节码后再看一看:

image-20221024091359601

不难发现,仅仅只是想增加一个 静态变量 ,结果凭空增加了一个 静态对象 以及多增加了 get() 方法,这个成本可能远超出一个 静态参数 的价值。


const

抛开前者不谈(静态对象),那么我们有没有什么方法能让编译器少生成一个 get() 方法呢(非private)?

注意观察IDE提示,IDE会建议我们增加一个 const 的参数,如下所示:

companion object {
    const val SUM_MAX: Int = 13
}

增加了 const 后,相应的 get() 方法也会消失掉,从而节省了一个 get() 方法。

const,在 Kotlin 中,用于修饰编译时已知的 val(只读,类似final) 标注的属性。

  • 只能用于顶层的class中,比如 object class 或者 companion object
  • 只能用于基本类型;
  • 不会生成get()方法。

JvmField

如果我们 某个字段不是 val 标注呢,其是 var (可变)修饰的呢,并且这个字段要对外暴漏(非private)。

此时不难猜测,相应的字节码后肯定会同时生成 set与get 方法。

此时就可以使用 @JvmField 来进行修饰。

如下所示:

class Book {
    companion object {
        @JvmField
        var sum: Int = 0
    }
}

相应的字节码如下: image-20221024142110409

Tips

让我们再回到伴生对象本身,我们真的一定需要它吗?

对于和业务强关联的 key 或者 TAG ,可以选择使用伴生对象,并为其增加 const val,此时语义上的清晰比内存上的损耗更加重要,特别在复杂的业务背景下。

但如果仅用于保存一些key,那么完全可以使用 object Class 替代,如下所示,将其回归到一个类中:

object Keys {
    const val DEFAULT_SUM = 10
    const val DEFAULT_MIN = 1
    const val LOGIN_KEY = 99
}

2022/12/6补充

使用 kotlin 文件形式去写。

这种写法属于以增加静态类的方式避免伴生对象的内存损耗,如果你的场景是单独的增加一个tag,那么这种写法比较推荐。

对于sdk的开发者,同时建议增加 @file:JvmName(“ 文件名”) ,从而禁止生成的 xxxkt类 在 java 语境下被调用到 (欺负java不识别空格🤪)。

@file:JvmName(" Testxx")
​
private const val TAG = "KEY_TEST_TAG"
​
class TestKt {
    private fun test() {
        println(TAG)
    }
}

Apply!=构造者模式

apply 作为开发中的常客,为我们带来了不少便利。其内部实现也非常简单,将我们的对象以函数的形式返回,this 作为接收者。从而以一种优雅的方式实现对对象方法、属性的调用。

但经常会看到有不少同学在构造者模式中写出以下代码,使用 apply 直接作为返回值,这种方式固然看着优雅,性能也几乎没有差别。但这种场景而言,如果我们注意到其字节码,会发现其并不是最佳之选。

示例

image-20221022082110693

如题,我们存在一个示例Builder,并在其中添加了两个方法,即 addTitle(),与 addSecondTitle() 。后者以 apply 作为返回值,代码可读性非常好,相比前者,在 kotlin 中其显得非常优雅。

但如果我们去看一眼字节码呢?

image-20221022082523238

如上所示,使用了 apply 后,我们的字节码中增加了多余步骤,相比不使用的,包大小会有一点影响,性能上几乎毫无差距。

Tips

apply 很好用,但需要区分场景。其可以改善我们在 kotlin 语义下的编程体验,但同时也不是任何场景都需要其。

如果你的方法中需要对某个对象操作多次,比如调用其方法或者属性,那么此时可以使用 apply ,反之,如果次数过少,其实你并不需要 apply 的优雅。

警惕,lazy 的使用方式

lazy,中文译名为延迟初始化,顾名思义,用于延迟初始化一些信息。

作用也相对直接,如果我们有某个对象或字段,我们可能只想使用时再初始化,此时就可以先声明,等到使用时再去初始化,并且这个初始化过程默认也是线程安全(不特定使用NONE)。这样的好处就是性能优势,我们不必应用或者页面加载时就初始化一切,相比过往的 var xx = null ,这种方式一定程度上也更加便捷。

相应的,lazy一共有三种模式,即:

  • SYNCHRONIZED(同步锁,默认实现)
  • PUBLICATION(CAS)
  • NONE(不作处理)

lazy 虽然使用简单,但在 Android 的开发背景下,lazy 经常容易使用不当🤦🏻‍♂️,也因此常常会出现为了[便利] 而造成的性能隐患。

示例如下:

image.png

如上所示,我们延迟初始化了一个点击事件,方便在 onCreate() 中进行设置 点击事件 以及后续复用

上述示例虽然看着似乎没什么问题。但放在这样的场景下,这个 mClickListener 本身的意义也许并不大。为什么这样说?

  1. 上述使用了 默认的lazy ,即同步锁,而Android默认线程为 UI线程 ,当前操作方法又是 onCreate() ,即当前本身就是线程安全。此时依然使用 lazy(sys) ,即浪费了一定初始化性能。
  2. MainActivity初始化时,会先在 构造函数 中初始化 lazy 对象,即 SYNCHRONIZED 对应的 SynchronizedLazyImpl。也就是说,我们一开始就已经多生成了一个对象。然后仅仅是为了一个点击事件,内部又会进行包装一次

相似的场景有很多,如果你的lazy是用于 Android生命周期组件 ,再加上本身会在 onCreate() 等中进行调用,那么很可能完全没有必要延迟初始化。

关于 arrayOf() 的使用细节

对于 arrayOf ,我们一般经常用于初始化一个数组,但其也隐藏着一些使用细节。

通常来说,对于基本类型的数组,建议使用默认已提供的函数比如,intArrayOf() 等等,从而便于提升性能。

至于原因,我们下面来分析,如下所示:

fun test() {
    arrayOf(1, 2, 3)
}

fun testNoInteger() {
    intArrayOf(1, 2, 3)
}

我们提供了两个方法,前者是默认方法,后者是带优化的方法,具体字节码如下:

image-20221022095310870

如题,不难发现,前者使用的是 java 中的 包装类型 ,使用时还需要经历 拆箱装箱 ,而后者是非包装类型,从而免除了这一操作,从而节省性能。

什么是装箱与拆箱?

背景:Java 中,万物皆对象,而八大基本类型不是对象,所以 Java 为每种基本类型都提供了相应的包装类型。

装箱就是指将基本类型转为包装类型,拆箱则是将包装类型转为基本类型。

总结

本篇中,我们以日常开发的视角,去探寻了 Kotlin 中那些 [隐藏] 的内存陷阱。

仔细回想,上述的不恰当用法都是建立在 [不熟练] 的背景下。Kotlin 本身的各种便利没有任何问题,其使得我们的 代码可读性开发舒适度 增强了太多。但如果同时,我们还能注意到其背后的实现,也是不是就能在 性能与优雅 之间找到了一种平衡。

所谓左眼 kt ,右眼 java,正是如此。作为一个 Kotlin 使用者,这也是我们所不断追寻的。

善用字节码分析,你的技艺也将更上一筹。

参阅

关于我

我是 Petterp ,一个三流 Kotlin 使用者,如果本文对你有所帮助,欢迎点赞评论收藏,你的支持是我持续创作的最大鼓励!