【概率论基础进阶】数理统计的基本概念-常用统计分布

47 阅读2分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

χ2\chi^{2}分布

定义:设随机变量X1,X2,,XnX_{1},X_{2},\cdots,X_{n}相互独立且均服从标准正态分布N(0,1)N(0,1),则称随机变量

χ2=X12+X22++Xn2 \chi^{2}=X_{1}^{2}+X_{2}^{2}+\cdots +X_{n}^{2}

服从自由度为nnχ2\chi^{2}分布,记作χ2χ2(n)\chi^{2}\sim \chi^{2}(n)

 

nn个相互独立标准正态随机变量的平方和χ2=X12+X22++Xn2\chi^{2}=X_{1}^{2}+X_{2}^{2}+\cdots +X_{n}^{2}称为χ2(n)\chi^{2}(n)的典型模式

 

性质

χ2χ2(n)\chi^{2}\sim \chi^{2}(n),对给定α(0<α<1)\alpha(0<\alpha<1),称满足条件

P{χ2>χα2(n)}=χα2(n)+f(x)dx=α P \left\{\chi^{2}> \chi^{2}_{\alpha}(n)\right\}=\int_{\chi_{\alpha}^{2}(n)}^{+\infty}f(x)dx=\alpha

的点χα2(n)\chi^{2}_{\alpha}(n)χ2(n)\chi^{2}(n)分布的上α\alpha分位点,如下图所示

 

![[附件/Pasted image 20220920224159.png|300]]

 

 

对不同的α\alphannχα2\chi_{\alpha}^{2}通常通过查表求得

 

χ2χ2(n)\chi^{2}\sim \chi^{2}(n),则E(χ2)=n,D(χ2)=2nE(\chi^{2})=n,D(\chi^{2})=2n

χ12χ2(n1),χ22χ2(n2)\chi_{1}^{2}\sim \chi^{2}(n_{1}),\chi_{2}^{2}\sim \chi^{2}(n_{2}),且χ12\chi_{1}^{2}χ22\chi_{2}^{2}相互独立,则χ12+χ22χ2(n1+n2)\chi_{1}^{2}+\chi_{2}^{2}\sim \chi^{2}(n_{1}+n_{2})

 

例1:已知χ2χ2(n)\chi^{2}\sim \chi^{2}(n),则E(χ4)=()E(\chi^{4})=()

 

E(χ4)=D(χ2)+[E(χ2)]2=2n+n2 E(\chi^{4})=D(\chi^{2})+[E(\chi^{2})]^{2}=2n+n^{2}

 

tt分布

定义:设随机变量XXYY相互独立,且XN(0,1),Yχ2(n)X \sim N(0,1),Y \sim \chi^{2}(n),则称随机变量服从自由度为nntt分布,记作Tt(n)T \sim t(n)

 

满足X,YX,Y独立,XN(0,1),Yχ2(n)X \sim N(0,1),Y \sim \chi^{2}(n)三条件的T=XY/nT=\frac{X}{\sqrt{Y/n}}称为t(n)t(n)的典型模式

 

性质

tt分布的概率密度f(x)f(x)是偶函数,即

f(x)=f(x) f(x)=f(-x)

且当nn充分大时,t(n)t(n)分布近似于N(0,1)N(0,1)分布

 

![[附件/Pasted image 20220921085446.png|300]]

 

 

Tt(n)T \sim t(n),对给定的α(0<α<1)\alpha(0<\alpha<1),称满足条件

P{T>tα(n)}=tα(n)+f(x)dx=α P \left\{T >t_{\alpha}(n)\right\}=\int_{t_{\alpha}(n)}^{+\infty}f(x)dx=\alpha

的点tα(n)t_{\alpha}(n)t(n)t(n)分布的上α\alpha分位点

 

由于t(n)t(n)分布的概率密度为偶函数,可知tt分布的双侧α\alpha分位点tα/2(n)t_{\alpha/2}(n),有

P{T>tα/2(n)}=α P \left\{|T|>t_{\alpha/2}(n)\right\}=\alpha

 

如图,由对称性可知

t1α(n)=tα(n) t_{1-\alpha}(n)=-t_{\alpha}(n)

 

FF分布

定义:设随机变量XXYY相互独立,且Xχ2(n1),Yχ2(n2)X \sim \chi^{2}(n_{1}),Y \sim \chi^{2}(n_{2}),则称随机变量

F=X/n1Y/n2 F=\frac{X/n_{1}}{Y/n_{2}}

服从自由度为(n1,n2)(n_{1},n_{2})FF分布,记作FF(n1,n2)F \sim F(n_{1},n_{2}),其中n1n_{1}n2n_{2}分别称为第一自由度和第二自由度

 

满足X,YX,Y独立,Xχ2(n1),Yχ2(n2)X \sim \chi^{2}(n_{1}),Y \sim \chi^{2}(n_{2})三条件的F=X/n1Y/n2\begin{aligned} F=\frac{X/n_{1}}{Y/n_{2}}\end{aligned}称为F(n1,n2)F(n_{1},n_{2})的典型模式

 

性质

FF(n1,n2)F \sim F(n_{1},n_{2}),对给定的α(0<α<1)\alpha(0<\alpha<1),称满足条件

P{F>Fα(n1,n2)}=Fα(n1,n2)+f(x)dx=α P \left\{F>F_{\alpha}(n_{1},n_{2})\right\}=\int_{F_\alpha(n_{1},n_{2})}^{+\infty}f(x)dx=\alpha

的点Fα(n1,n2)F_\alpha(n_{1},n_{2})F(n1,n2)F(n_{1},n_{2})分布的上α\alpha分位点

 

如果FF(n1,n2)F \sim F(n_{1},n_{2}),则1FF(n2,n1)\begin{aligned} \frac{1}{F}\sim F(n_{2},n_{1})\end{aligned},且有

F1α(n1,n2)=1Fα(n2,n1) F_{1-\alpha}(n_{1},n_{2})=\frac{1}{F_{\alpha}(n_{2},n_{1})}

证明:

1α=P{F>F1α(n1,n2)}=P{1F<1F1α(n1,n2)}=1P{1F 1F1α(n1,n2)}=1P{1F> 1F1α(n1,n2)} \begin{aligned} 1-\alpha&=P \left\{F>F_{1-\alpha}(n_{1},n_{2})\right\}\\ &=P\left\{ \frac{1}{F}< \frac{1}{F_{1-\alpha}(n_{1},n_{2})}\right\}\\ &=1-P\left\{ \frac{1}{F}\geq  \frac{1}{F_{1-\alpha}(n_{1},n_{2})}\right\}\\ &=1-P\left\{ \frac{1}{F}>  \frac{1}{F_{1-\alpha}(n_{1},n_{2})}\right\} \end{aligned}

P{1F> 1F1α(n1,n2)}=α\begin{aligned} P\left\{ \frac{1}{F}>  \frac{1}{F_{1-\alpha}(n_{1},n_{2})}\right\}=\alpha\end{aligned},又根据FF分布的性质,有

P{1F>Fα(n2,n1)}=α P \left\{ \frac{1}{F}>F_{\alpha}(n_{2},n_{1})\right\}=\alpha

因此1F1α(n1,n2)=Fα(n2,n1)\begin{aligned} \frac{1}{F_{1-\alpha}(n_{1},n_{2})}=F_{\alpha}(n_{2},n_{1})\end{aligned}

 

正态总体的抽验分布

一个正态总体

XN(μ,σ2),X1,X2,,XnX \sim N(\mu,\sigma^{2}),X_{1},X_{2},\cdots,X_{n}是来自总体的样本,样本均值为Xˉ\bar{X},样本方差为S2S^{2},则有:

  • XˉN(μ,σ2n),U=Xˉμσ/nN(0,1)\begin{aligned} \bar{X}\sim N(\mu, \frac{\sigma^{2}}{n}),U=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)\end{aligned}

  • Xˉ\bar{X}S2S^{2}相互独立,且χ2=(n1)S2σ2χ2(n1)\begin{aligned} \chi^{2}=\frac{(n-1)S^{2}}{\sigma^{2}}\sim \chi^{2}(n-1)\end{aligned}

  • T=Xˉμσ/n/(n1)S2σ2(n1)=XˉμS/nt(n1)\begin{aligned} T=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\Big/\sqrt{\frac{(n-1)S^{2}}{\sigma^{2}(n-1)}}=\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)\end{aligned}

  • χ2=1σ2i=1n(Xiμ)2χ2(n)\begin{aligned} \chi^{2}=\frac{1}{\sigma^{2}}\sum\limits_{i=1}^{n}(X_{i}-\mu)^{2}\sim \chi^{2}(n)\end{aligned}

 

两个正态总体

XN(μ,σ12)X \sim N(\mu,\sigma^{2}_{1})YN(μ2,σ22),X1,X2,,Xn1Y \sim N(\mu_{2},\sigma_{2}^{2}),X_{1},X_{2},\cdots,X_{n_{1}}Y1,Y2,,Yn2Y_{1},Y_{2},\cdots ,Y_{n_{2}}是分别来自总体 XXYY的样本且相互独立,样本均值分别为Xˉ\bar{X}Yˉ\bar{Y},样本方差分别为S12S_{1}^{2}S22S_{2}^{2},则有

  • XˉYˉN(μ1μ2,σ12n1+σ22n2),U=(XˉYˉ)(μ1μ2)σ12n1+σ22n2N(0,1)\begin{aligned} \bar{X}-\bar{Y}\sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+ \frac{\sigma_{2}^{2}}{n_{2}}\right),U=\frac{(\bar{X}-\bar{Y})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+ \frac{\sigma_{2}^{2}}{n_{2}}}}\sim N(0,1)\end{aligned}

  • 如果σ12=σ22\sigma_{1}^{2}=\sigma_{2}^{2},则

         T=XˉYˉ(μ1μ2)Sw1n1+1n2t(n1+n22)T=\frac{\bar{X}-\bar{Y}-(\mu_{1}-\mu_{2})}{S_{w}\sqrt{\frac{1}{n_{1}}+ \frac{1}{n_{2}}}}\sim t(n_{1}+n_{2}-2)

         其中Sw2=(n11)S12+(n21)S22n1+n22\begin{aligned} S_{w}^{2}=\frac{(n_{1}-1)S_{1}^{2}+(n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}\end{aligned}

  • F=S12/σ12S22/σ22F(n11,n21)\begin{aligned} F=\frac{S_{1}^{2}/\sigma_{1}^{2}}{S_{2}^{2}/\sigma_{2}^{2}}\sim F(n_{1}-1,n_{2}-1)\end{aligned}

 

XXYY相互独立Xχ2(n1),Yχ2(n2)X \sim \chi^{2}(n_{1}),Y \sim \chi^{2}(n_{2}),则

F=X/n1Y/n2F(n1,n2)F=\frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})

称为自由度为n1,n2n_{1},n_{2}FF分布

 

例1:设总体XX的概率密度f(x)=12ex,<x<+,X1,X2,,Xn\begin{aligned} f(x)=\frac{1}{2}e^{-|x|},-\infty<x<+\infty,X_{1},X_{2},\cdots,X_{n}\end{aligned}为总体XX的简单随机样本,其样本方差为S2S^{2},则E(S2)=()E(S^{2})=()

 

E(S2)=D(X)=E(X2)[E(X)]2EX=+x 12exdx=0E(X2)=+x212exdx=20+x212exdx=0+x2exdx=2 \begin{aligned} E(S^{2})&=D(X)=E(X^{2})-[E(X)]^{2}\\ EX&=\int_{-\infty}^{+\infty}x \cdot  \frac{1}{2}e^{-|x|}dx=0\\ E(X^{2})&=\int_{-\infty}^{+\infty}x^{2} \cdot \frac{1}{2}e^{-|x|}dx\\ &=2\int_{0}^{+\infty}x^{2} \cdot \frac{1}{2}e^{-x}dx\\ &=\int_{0}^{+\infty}x^{2}e^{-x}dx=2 \end{aligned}

因此E(S2)=2E(S^{2})=2

 

例2:X1,X2,X3,X4X_{1},X_{2},X_{3},X_{4}为来自总体N(1,σ2)(σ>0)N(1,\sigma^{2})(\sigma>0)的简单随机样本,证明统计量X1X2X3+X42t(1)\begin{aligned} \frac{X_{1}-X_{2}}{|X_{3}+X_{4}-2|}\sim t(1)\end{aligned}

 

X1X2N(0,2σ2)X1X22σN(0,1)X3+X42N(0,2σ2)X3+X422σN(0,1)(X3+X422σ)2χ2(1) \begin{aligned} X_{1}-X_{2}\sim N(0,2 \sigma^{2})&\Rightarrow \frac{X_{1}-X_{2}}{\sqrt{2}\sigma}\sim N(0,1)\\ X_{3}+X_{4}-2 \sim N(0,2\sigma^{2})&\Rightarrow \frac{X_{3}+X_{4}-2}{\sqrt{2}\sigma}\sim N(0,1)\\ &\Rightarrow \left(\frac{X_{3}+X_{4}-2}{\sqrt{2}\sigma}\right)^{2}\sim \chi^{2}(1) \end{aligned}

X1X2X_{1}-X_{2}X3+X42X_{3}+X_{4}-2相互独立,X1X22σ\begin{aligned} \frac{X_{1}-X_{2}}{\sqrt{2}\sigma}\end{aligned}(X3+X422σ)2\begin{aligned} \left(\frac{X_{3}+X_{4}-2}{\sqrt{2}\sigma}\right)^{2}\end{aligned}也相互独立,综上所述,记

X1X2X3+X42=X1X22σ(X3+X422σ)2/1=XY/1 \frac{X_{1}-X_{2}}{|X_{3}+X_{4}-2|}=\frac{\frac{X_{1}-X_{2}}{\sqrt{2}\sigma}}{\sqrt{\left(\frac{X_{3}+X_{4}-2}{\sqrt{2}\sigma}\right)^{2}/1}}=\frac{X}{\sqrt{Y/1}}

其中XN(0,1),Yχ2(1)X \sim N(0,1),Y \sim \chi^{2}(1),且XXYY相互独立,因此X1X2X3+X42t(1)\begin{aligned} \frac{X_{1}-X_{2}}{|X_{3}+X_{4}-2|}\sim t(1)\end{aligned}

 

例3:设总体XXYY均服从正态分布N(μ,σ2),σ>0,X1,X2,,XnN(\mu,\sigma^{2}),\sigma>0 ,X_{1},X_{2},\cdots,X_{n}Y1,Y2,,YnY_{1},Y_{2},\cdots ,Y_{n}分别是来自总体XXYY的两个相互独立的简单随机样本,它们的样本方差分别为SX2S^{2}_{X}SY2S_{Y}^{2},则统计量T=n1σ2(SX2+SY2)\begin{aligned} T=\frac{n-1}{\sigma^{2}}(S_{X}^{2}+S_{Y}^{2})\end{aligned}服从的分布及参数为()

 

n1σ2SX2χ2(n1),n1σ2SY2χ2(n1) \frac{n-1}{\sigma^{2}}S_{X}^{2}\sim \chi^{2}(n-1), \frac{n-1}{\sigma^{2}}S_{Y}^{2}\sim \chi^{2}(n-1)

又因为它们相互独立,故

n1σ2SX2+n1σ2SY2=n1σ2(SX2+SY2)χ2(2n2) \frac{n-1}{\sigma^{2}}S_{X}^{2}+\frac{n-1}{\sigma^{2}}S_{Y}^{2}=\frac{n-1}{\sigma^{2}}(S_{X}^{2}+S_{Y}^{2})\sim \chi^{2}(2n-2)

 

例9:设随机变量Xt(n),YF(1,n)X \sim t(n),Y \sim F(1,n),给定α(0<α<0.5)\alpha(0<\alpha<0.5),常数cc满足P{X>c}=aP \left\{X>c\right\}=a,则P{Y>c2}=()P \left\{Y>c^{2}\right\}=()

 

X=X1Y1/n,其中X1N(0,1);Y1χ2(n);二者相互独立 X=\frac{X_{1}}{\sqrt{Y_{1}/n}},其中X_{1}\sim N(0,1);Y_{1}\sim \chi^{2}(n);二者相互独立

因为tt分布的密度函数是偶函数,所以对给定的α\alpha,常数cc满足P{X>c}=P{X<c}=aP \left\{X>c\right\}=P \left\{X<-c\right\}=a。又有

X2=X12Y1/n,其中X12χ2(1);Y12χ2(n);二者相互独立 X^{2}=\frac{X_{1}^{2}}{Y_{1}/n},其中X_{1}^{2}\sim \chi^{2}(1);Y_{1}^{2}\sim \chi^{2}(n);二者相互独立

因此X2F(1,n)X^{2}\sim F(1,n),因此有

P{Y>c2}=P{X2>c2}=P{X>c}+P{X<c}=2α P \left\{Y>c^{2}\right\}=P \left\{X^{2}>c^{2}\right\}=P \left\{X>c\right\}+P \left\{X<-c\right\}=2 \alpha