浏览器工作原理——宏观视角下的浏览器

197 阅读38分钟

01 | Chrome架构:仅仅打开了1个页面,为什么有4个进程?

浏览器的并行处理

计算机中的并行处理就是同一时刻处理多个任务,比如我们要计算下面这三个表达式的值,并显示出结果。

A = 1+2
B = 20/5
C = 7*8

在编写代码的时候,我们可以把这个过程拆分为四个任务:

  • 任务 1 是计算 A=1+2;
  • 任务 2 是计算 B=20/5;
  • 任务 3 是计算 C=7*8;
  • 任务 4 是显示最后计算的结果。

正常情况下,程序可以可以使用单线程按照顺序分别执行这4个任务。

如果采用多线程,我们只需分“两步走”:第一步,使用三个线程同时执行前三个任务;第二步,再执行第四个显示任务。

通过对比分析,你会发现用单线程执行需要四步,而使用多线程只需要两步。因此,使用并行处理能大大提升性能。

进程 vs 线程

多线程可以并行处理任务,但是线程是不能单独存的,它是由进程来启动和管理的一个进程就是一个程序的运行实例,详细解释就是:启动一个程序的时候,操作系统会为该程序创建一块内存用来存放代码,运行这种的数据和一个执行任务的主线程,我们把这样的一个运行环境叫进程

image.png

单线程与多线程的进程对比图

从图中可以看到,线程是依附于进程的,而进程中使用多线程并行处理能提升运算效率。

进程与线程之间有以下4个特点

  • 进程中的任意一线程执行出错,都会导致整个进程的崩溃。
  • 线程之间共享进程中的数据。 image.png
  • 当一个进程关闭之后,操作系统会回收进程所占用的内存。
  • 进程之间的内容相互隔离。进程隔离是为保护操作系统中进程互不干扰的技术。

单进程浏览器时代

image.png

单进程浏览器架构示意图

如此多的功能模块运行在一个进程里,是导致单进程浏览器不稳定、不流畅和不安全的一个主要因素。下面我就来一一分析下出现这些问题的原因。
  • 不稳定

早期浏览器借助插件来实现诸如web视频,web游戏等各种强大的功能,但是插件是最容易出问题的模块,并且还运行在浏览器进程之中,所以一个插件的崩溃会引起整个浏览器的崩溃,除了插件之外,渲染引擎模块也是不稳定的,通常一些复杂中的js代码就有可能引起渲染引擎模块的崩溃,也会导致整个浏览器崩溃。

  • 不流畅

从上面的“单进程浏览器架构示意图”可以看出,所有页面的渲染模块、JavaScript 执行环境以及插件都是运行在同一个线程中的,这就意味着同一时刻只能有一个模块可以执行。如果写了一个无限循环的js脚本,它就会独占整个线程,其他运行在该线程的模块就不会被执行,这样就会导致整个浏览器失去响应,变卡顿。除此之外,页面的内存泄漏也是单进程变慢的一个中重要原因,通常浏览器的内核都是非常复杂的,运行一个复杂点的页面再关闭页面,会存在内存不能完全回收的情况,这样导致的问题是使用时间越长,内存占用越高,浏览器会变得越慢。

  • 不安全

这里依然可以从插件和页面脚本两个方面来解释该原因。插件可以使用 C/C++ 等代码编写,通过插件可以获取到操作系统的任意资源,当你在页面运行一个插件时也就意味着这个插件能完全操作你的电脑。如果是个恶意插件,那么它就可以释放病毒、窃取你的账号密码,引发安全性问题。

至于页面脚本,它可以通过浏览器的漏洞来获取系统权限,这些脚本获取系统权限之后也可以对你的电脑做一些恶意的事情,同样也会引发安全问题。

以上这些就是当时单线程浏览器的特点,不稳定,不流畅,而且不安全。你可以想象一下这样的场景:当你正在用浏览器打开多个页面时,突然某个页面崩溃了或者失去响应,随之而来的是整个浏览器的崩溃或者无响应,然后你发现你给老板写的邮件页面也随之消失了,这时你的心情会不会和页面一样崩溃呢?

早期多进程架构

下面这张图是2008 年 Chrome 发布时的进程架构。

image.png

早期 Chrome 进程架构图

从图中可以看出,Chrome 的页面是运行在单独的渲染进程中的,同时页面里的插件也是运行在单独的插件进程之中,而进程之间是通过 IPC 机制进行通信(如图中虚线部分)。
  • 解决不稳定的问题

由于进程是相互隔离的,所以当一个页面或者插件崩溃时,影响到的仅仅是当前的页面进程或者插件进程,并不会影响到浏览器和其他页面,这就完美地解决了页面或者插件的崩溃会导致整个浏览器崩溃,也就是不稳定的问题。

  • 解决不流畅的问题

JavaScript 也是运行在渲染进程中的,所以即使 JavaScript 阻塞了渲染进程,影响到的也只是当前的渲染页面,而并不会影响浏览器和其他页面,因为其他页面的脚本是运行在它们自己的渲染进程中的。所以当我们再在 Chrome 中运行上面那个死循环的脚本时,没有响应的仅仅是当前的页面。对于内存泄漏的解决方法那就更简单了,因为当关闭一个页面时,整个渲染进程也会被关闭,之后该进程所占用的内存都会被系统回收,这样就轻松解决了浏览器页面的内存泄漏问题。

  • 解决安全问题

采用多进程架构的额外好处是可以使用安全沙箱,你可以把沙箱看成是操作系统给进程上了一把锁,沙箱里面的程序可以运行,但是不能在你的硬盘上写入任何数据,也不能在敏感位置读取任何数据,例如你的文档和桌面。Chrome 把插件进程和渲染进程锁在沙箱里面,这样即使在渲染进程或者插件进程里面执行了恶意程序,恶意程序也无法突破沙箱去获取系统权限。

目前多进程架构

image.png

最新的 Chrome 进程架构图

从图中可以看出,最新的 Chrome 浏览器包括:1 个浏览器(Browser)主进程、1 个 GPU 进程、1 个网络(NetWork)进程、多个渲染进程和多个插件进程。
  • 浏览器进程:主要负责界面显示、用户交互、子进程管理,同时提供存储等功能。
  • 渲染进程:核心任务是将 HTML、CSS 和 JavaScript 转换为用户可以与之交互的网页,排版引擎 Blink 和 JavaScript 引擎 V8 都是运行在该进程中,默认情况下,Chrome 会为每个 Tab 标签创建一个渲染进程。出于安全考虑,渲染进程都是运行在沙箱模式下。
  • GPU 进程:其实,Chrome 刚开始发布的时候是没有 GPU 进程的。而 GPU 的使用初衷是为了实现 3D CSS 的效果,只是随后网页、Chrome 的 UI 界面都选择采用 GPU 来绘制,这使得 GPU 成为浏览器普遍的需求。最后,Chrome 在其多进程架构上也引入了 GPU 进程。
  • 网络进程:主要负责页面的网络资源加载,之前是作为一个模块运行在浏览器进程里面的,直至最近才独立出来,成为一个单独的进程。
  • 插件进程:主要是负责插件的运行,因插件易崩溃,所以需要通过插件进程来隔离,以保证插件进程崩溃不会对浏览器和页面造成影响。

现在我们就可以回答,仅仅打开一个页面,为什么有4个进程,因为打开1个页面至少需要一个网络进程,1个浏览器进程,1个渲染进程,1个GPU进程,如果打开页面有插件的话,还需要加上一个插件进程。

不过凡事都有两面性,虽然多进程模型提升了浏览器的稳定性、流畅性和安全性,但同样不可避免地带来了一些问题:

  • 更高的资源占用。因为每个进程都会包含公共基础结构的副本(如 JavaScript 运行环境),这就意味着浏览器会消耗更多的内存资源。
  • 更复杂的体系架构。浏览器各模块之间耦合性高、扩展性差等问题,会导致现在的架构已经很难适应新的需求了。

02 | TCP协议:如何保证页面文件能被完整送达浏览器?

首屏渲染

在衡量 Web 页面性能的时候有一个重要的指标叫“FP(First Paint)”,是指从页面加载到首次开始绘制的时长。这个指标直接影响了用户的跳出率,更快的页面响应意味着更多的 PV、更高的参与度,以及更高的转化率。其中网络加载速度是影响FP的重要因素。

页面文件是如何被送达到浏览器

数据包如何送达主机??

IP:把数据包送达目的主机

数据包要在互联网上进行传输,就要符合网际协议(Internet Protocol,简称 IP)标准。互联网上不同的在线设备都有唯一的地址,地址只是一个数字,这和大部分家庭收件地址类似,你只需要知道一个家庭的具体地址,就可以往这个地址发送包裹,这样物流系统就能把物品送到目的地。

计算机的地址就称为 IP 地址,访问任何网站实际上只是你的计算机向另外一台计算机请求信息。

发送数据的主机会在数据包里附加IP头的数据,包含 IP 版本、源 IP 地址、目标 IP 地址、生存时间等信息。

主机如何将数据包转交给应用??

UDP:把数据包送达应用程序

IP 是非常底层的协议,只负责把数据包传送到对方电脑,但是对方电脑并不知道把数据包交给哪个程序,是交给浏览器还是交给王者荣耀?因此,需要基于 IP 之上开发能和应用打交道的协议,最常见的是“用户数据包协议(User Datagram Protocol)”,简称 UDP。

UDP 中一个最重要的信息是端口号,端口号其实就是一个数字,每个想访问网络的程序都需要绑定一个端口号。通过端口号 UDP 就能把指定的数据包发送给指定的程序了,所以 IP 通过 IP 地址信息把数据包发送给指定的电脑,而 UDP 通过端口号把数据包分发给正确的程序。和 IP 头一样,端口号会被装进 UDP 头里面,UDP 头再和原始数据包合并组成新的 UDP 数据包。UDP 头中除了目的端口,还有源端口号等信息。

在使用 UDP 发送数据时,有各种因素会导致数据包出错,虽然 UDP 可以校验数据是否正确,但是对于错误的数据包,UDP 并不提供重发机制,只是丢弃当前的包,而且 UDP 在发送之后也无法知道是否能达到目的地。

虽说 UDP 不能保证数据可靠性,但是传输速度却非常快,所以 UDP 会应用在一些关注速度、但不那么严格要求数据完整性的领域,如在线视频、互动游戏等。

数据是如何被完整地送达应用程序??

TCP:把数据完整地送达应用程序

对于浏览器请求,或者邮件这类要求数据传输可靠性(reliability)的应用,如果使用 UDP 来传输会存在两个问题:

  • 数据包在传输过程中容易丢失;
  • 大文件会被拆分成很多小的数据包来传输,这些小的数据包会经过不同的路由,并在不同的时间到达接收端,而 UDP 协议并不知道如何组装这些数据包,从而把这些数据包还原成完整的文件。

基于这两个问题,我们引入 TCP 了。TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。相对于 UDP,TCP 有下面两个特点:

  • 对于数据包丢失的情况,TCP 提供重传机制;
  • TCP 引入了数据包排序机制,用来保证把乱序的数据包组合成一个完整的文件。

和 UDP 头一样,TCP 头除了包含了目标端口和本机端口号外,还提供了用于排序的序列号,以便接收端通过序号来重排数据包。

TCP 单个数据包的传输流程和 UDP 流程差不多,不同的地方在于,通过 TCP 头的信息保证了一块大的数据传输的完整性。

从下图可以看出,一个完整的 TCP 连接的生命周期包括了“建立连接”“传输数据”和“断开连接”三个阶段。

image.png

以上可以看出,TCP 为了保证数据传输的可靠性,牺牲了数据包的传输速度,因为“三次握手”和“数据包校验机制”等把传输过程中的数据包的数量提高了一倍。

03 | HTTP请求流程:为什么很多站点第二次打开速度会很快?

HTTP和TCP

TCP 连接过程包括了建立连接、传输数据和断开连接三个阶段。而 HTTP 协议,正是建立在 TCP 连接基础之上的。HTTP 是一种允许浏览器向服务器获取资源的协议,是 Web 的基础,通常由浏览器发起请求,用来获取不同类型的文件,例如 HTML 文件、CSS 文件、JavaScript 文件、图片、视频等。此外,HTTP 也是浏览器使用最广的协议。

因为浏览器使用 HTTP 协议作为应用层协议,用来封装请求的文本信息;并使用 TCP/IP 作传输层协议将它发到网络上,所以在 HTTP 工作开始之前,浏览器需要通过 TCP 与服务器建立连接。也就是说 HTTP 的内容是通过 TCP 的传输数据阶段来实现的,你可以结合下图更好地理解这二者的关系。

image.png

浏览器端发起 HTTP 请求流程

首先:如果我们在浏览器输入网站的地址,那么接下来浏览器会完成以下动作:

1. 构建请求

首先,浏览器构建请求行信息(如下所示),构建好后,浏览器准备发起网络请求。

GET /index.html

2. 查找缓存

在真正发起网络请求之前,浏览器会先在浏览器缓存中查询是否有要请求的文件。其中,浏览器缓存是一种在本地保存资源副本,以供下次请求时直接使用的技术。

当浏览器发现请求的资源已经在浏览器缓存中存有副本,它会拦截请求,返回该资源的副本,并直接结束请求,而不会再去源服务器重新下载。

这样做的好处有:

  • 缓解服务器端压力,提升性能(获取资源的耗时更短了);
  • 对于网站来说,缓存是实现快速资源加载的重要组成部分。当然,如果缓存查找失败,就会进入网络请求过程了

3. 准备 IP 地址和端口 那接下来你可以思考这么“一连串”问题:HTTP 网络请求的第一步是做什么呢?

  • 第一步是和服务器建立 TCP 连接。那建立连接的信息都有了吗?
  • 建立 TCP 连接的第一步就是需要准备 IP 地址和端口号。那怎么获取 IP 地址和端口号呢?
  • 这得看看我们现在有什么,我们有一个 URL 地址,那么是否可以利用 URL 地址来获取 IP 和端口信息呢?

之前介绍过数据包都是通过 IP 地址传输给接收方的,但是ip地址是数字标记,比较难以记忆,域名就好记多了,所以基于这个需求又出现了一个服务,负责把域名和 IP 地址做一一映射关系。这套域名映射为 IP 的系统就叫做“域名系统”,简称 DNS(Domain Name System)。

所以,这样一路推导下来,你会发现在第一步浏览器会请求 DNS 返回域名对应的 IP。当然浏览器还提供了 DNS 数据缓存服务,如果某个域名已经解析过了,那么浏览器会缓存解析的结果,以供下次查询时直接使用,这样也会减少一次网络请求。拿到 IP 之后,接下来就需要获取端口号了。通常情况下,如果 URL 没有特别指明端口号,那么 HTTP 协议默认是 80 端口。

4. 等待 TCP 队列

现在已经把端口和 IP 地址都准备好了,那么下一步是不是可以建立 TCP 连接了呢?答案依然是“不行”。Chrome 有个机制,同一个域名同时最多只能建立 6 个 TCP 连接,如果在同一个域名下同时有 10 个请求发生,那么其中 4 个请求会进入排队等待状态,直至进行中的请求完成。当然,如果当前请求数量少于 6,会直接进入下一步,建立 TCP 连接。

5. 建立 TCP 连接

排队等待结束之后,终于可以快乐地和服务器握手了,在 HTTP 工作开始之前,浏览器通过 TCP 与服务器建立连接。

6. 发送 HTTP 请求

一旦建立了 TCP 连接,浏览器就可以和服务器进行通信了。而 HTTP 中的数据正是在这个通信过程中传输的。

  • 首先浏览器会向服务器发送请求行

发送请求行,就是告诉服务器浏览器需要什么资源,最常用的请求方法是 Get。比如,直接在浏览器地址栏键入域名,这就是告诉服务器要 Get 它的首页资源。

另外一个常用的请求方法是 POST,它用于发送一些数据给服务器,比如登录一个网站,就需要通过 POST 方法把用户信息发送给服务器。如果使用 POST 方法,那么浏览器还要准备数据给服务器,这里准备的数据是通过请求体来发送。

在浏览器发送请求行命令之后,还要以请求头形式发送一些浏览器的基础信息。比如浏览器所使用的操作系统、浏览器内核等信息,以及当前请求的域名信息、浏览器端的 Cookie 信息,等等。

服务器端处理 HTTP 请求流程

历经千辛万苦,HTTP 的请求信息终于被送达了服务器。接下来,服务器会根据浏览器的请求信息来准备相应的内容。

1.返回请求

一旦服务器处理结束,便可以返回数据给浏览器了。你可以通过工具软件 curl 来查看返回请求数据,具体使用方法是在命令行中输入以下命令:

curl -i https://juejin.cn/

注意这里加上了-i是为了返回响应行、响应头和响应体的数据,返回的结果如下图所示. image.png 首先服务器会返回响应行,包括协议版本和状态码。

但并不是所有的请求都可以被服务器处理的,那么一些无法处理或者处理出错的信息,怎么办呢?服务器会通过请求行的状态码来告诉浏览器它的处理结果,比如:

  • 最常用的状态码是 200,表示处理成功;
  • 如果没有找到页面,则会返回 404。

正如浏览器会随同请求发送请求头一样,服务器也会随同响应向浏览器发送响应头。响应头包含了服务器自身的一些信息,比如服务器生成返回数据的时间、返回的数据类型(JSON、HTML、流媒体等类型),以及服务器要在客户端保存的 Cookie 等信息。

发送完响应头后,服务器就可以继续发送响应体的数据,通常,响应体就包含了 HTML 的实际内容。

2. 断开连接

通常情况下,一旦服务器向客户端返回了请求数据,它就要关闭 TCP 连接。不过如果浏览器或者服务器在其头信息中加入了:

Connection:Keep-Alive 

那么 TCP 连接在发送后将仍然保持打开状态,这样浏览器就可以继续通过同一个 TCP 连接发送请求。保持 TCP 连接可以省去下次请求时需要建立连接的时间,提升资源加载速度。比如,一个 Web 页面中内嵌的图片就都来自同一个 Web 站点,如果初始化了一个持久连接,你就可以复用该连接,以请求其他资源,而不需要重新再建立新的 TCP 连接。

3. 重定向

到这里似乎请求流程快结束了,不过还有一种情况你需要了解下,比如当你在浏览器中打开 juejin.cn 后,你会发现最终打开的页面地址是 juejin.cn。 这两个URL 之所以不一样,是因为涉及到了一个重定向操作。跟前面一样,你依然可以使用 curl 来查看下请求 juejin.cn 会返回什么内容?

在控制台输入如下命令

curl -I juejin.cn

注意这里输入的参数是-I,和-i不一样,-I表示只需要获取响应头和响应行数据,而不需要获取响应体的数据,最终返回的数据如下图所示:

image.png

服务器返回响应行和响应头(含重定向格式)

从图中你可以看到,响应行返回的状态码是 301,状态 301 就是告诉浏览器,我需要重定向到另外一个网址,而需要重定向的网址正是包含在响应头的 Location 字段中,接下来,浏览器获取 Location 字段中的地址,并使用该地址重新导航,这就是一个完整重定向的执行流程。这也就解释了为什么输入的是 juejin.cn,最终打开的却是 juejin.cn 了。

问题解答

1. 为什么很多站点第二次打开速度会很快?

如果第二次页面打开很快,主要原因是第一次加载页面过程中,缓存了一些耗时的数据。

那么,哪些数据会被缓存呢?从上面介绍的核心请求路径可以发现,DNS 缓存和页面资源缓存这两块数据是会被浏览器缓存的。其中,DNS 缓存比较简单,它主要就是在浏览器本地把对应的 IP 和域名关联起来。

我们重点看下浏览器资源缓存,下面是缓存处理的过程:

image.png

首先,我们看下服务器是通过什么方式让浏览器缓存数据的?

从上图的第一次请求可以看出,当服务器返回 HTTP 响应头给浏览器时,浏览器是通过响应头中的 Cache-Control 字段来设置是否缓存该资源。通常,我们还需要为这个资源设置一个缓存过期时长,而这个时长是通过 Cache-Control 中的 Max-age 参数来设置的,比如上图设置的缓存过期时间是 2000 秒。

Cache-Control:Max-age=2000

这也就意味着,在该缓存资源还未过期的情况下, 如果再次请求该资源,会直接返回缓存中的资源给浏览器。(这也就是为什么很多站点第二次打开会很快)

但如果缓存过期了,浏览器则会继续发起网络请求,并且在 HTTP 请求头中带上:

If-None-Match:"4f80f-13c-3a1xb12a"

服务器收到请求头后,会根据 If-None-Match 的值来判断请求的资源是否有更新。

  • 如果没有更新,就返回 304 状态码,相当于服务器告诉浏览器:“这个缓存可以继续使用,这次就不重复发送数据给你了。
  • ”如果资源有更新,服务器就直接返回最新资源给浏览器。 关于http缓存可以参考这篇文章。

简要来说,很多网站第二次访问能够秒开,是因为这些网站把很多资源都缓存在了本地,浏览器缓存直接使用本地副本来回应请求,而不会产生真实的网络请求,从而节省了时间。同时,DNS 数据也被浏览器缓存了,这又省去了 DNS 查询环节。

2. 登录状态是如何保持的?

  • 用户打开登录页面,在登录框里填入用户名和密码,点击确定按钮。点击按钮会触发页面脚本生成用户登录信息,然后调用 POST 方法提交用户登录信息给服务器。
  • 服务器接收到浏览器提交的信息之后,查询后台,验证用户登录信息是否正确,如果正确的话,会生成一段表示用户身份的字符串,并把该字符串写到响应头的 Set-Cookie 字段里,如下所示,然后把响应头发送给浏览器。
Set-Cookie: UID=3431uad;
  • 浏览器在接收到服务器的响应头后,开始解析响应头,如果遇到响应头里含有 Set-Cookie 字段的情况,浏览器就会把这个字段信息保存到本地。比如把UID=3431uad保存到浏览器的cookie里。
  • 当用户再次访问时,浏览器会发起 HTTP 请求,但在发起请求之前,浏览器会读取之前保存的 Cookie 数据,并把数据写进请求头里的 Cookie 字段里(如下所示),然后浏览器再将请求头发送给服务器。
Cookie: UID=3431uad;
  • 服务器在收到 HTTP 请求头数据之后,就会查找请求头里面的“Cookie”字段信息,当查找到包含UID=3431uad的信息时,服务器查询后台,并判断该用户是已登录状态,然后生成含有该用户信息的页面数据,并把生成的数据发送给浏览器。
  • 浏览器在接收到该含有当前用户的页面数据后,就可以正确展示用户登录的状态信息了。

image.png

简单地说,如果服务器端发送的响应头内有 Set-Cookie 的字段,那么浏览器就会将该字段的内容保持到本地。当下次客户端再往该服务器发送请求时,客户端会自动在请求头中加入 Cookie 值后再发送出去。服务器端发现客户端发送过来的 Cookie 后,会去检查究竟是从哪一个客户端发来的连接请求,然后对比服务器上的记录,最后得到该用户的状态信息。

总结

image.png

从图中可以看到,浏览器中的 HTTP 请求从发起到结束一共经历了如下八个阶段:构建请求、查找缓存、准备 IP 和端口、等待 TCP 队列、建立 TCP 连接、发起 HTTP 请求、服务器处理请求、服务器返回请求和断开连接。

04 | 导航流程:从输入URL到页面展示,这中间发生了什么?

在浏览器里,从输入 URL 到页面展示,这中间发生了什么? 这其中涉及到了网络、操作系统、Web 等一系列的知识。

  • 浏览器进程主要负责用户交互、子进程管理和文件储存等功能。
  • 网络进程是面向渲染进程和浏览器进程等提供网络下载功能。
  • 渲染进程的主要职责是把从网络下载的 HTML、JavaScript、CSS、图片等资源解析为可以显示和交互的页面。因为渲染进程所有的内容都是通过网络获取的,会存在一些恶意代码利用浏览器漏洞对系统进行攻击,所以运行在渲染进程里面的代码是不被信任的。这也是为什么 Chrome 会让渲染进程运行在安全沙箱里,就是为了保证系统的安全。

下图是我梳理出的“从输入 URL 到页面展示完整流程示意图”: image.png

  • 首先,浏览器进程接收到用户输入的 URL 请求,浏览器进程便将该 URL 转发给网络进程。
  • 然后,在网络进程中发起真正的 URL 请求。
  • 接着网络进程接收到了响应头数据,便解析响应头数据,并将数据转发给浏览器进程。
  • 浏览器进程接收到网络进程的响应头数据之后,发送“提交导航 (CommitNavigation)”消息到渲染进程;
  • 渲染进程接收到“提交导航”的消息之后,便开始准备接收 HTML 数据,接收数据的方式是直接和网络进程建立数据管道;
  • 最后渲染进程会向浏览器进程“确认提交”,这是告诉浏览器进程:“已经准备好接受和解析页面数据了”。
  • 浏览器进程接收到渲染进程“提交文档”的消息之后,便开始移除之前旧的文档,然后更新浏览器进程中的页面状态。

用户发出 URL 请求到页面开始解析的这个过程,就叫做导航。

用户输入

当用户在地址栏中输入一个查询关键字时,地址栏会判断输入的关键字是搜索内容,还是请求的 URL

  • 如果是搜索内容,地址栏会使用浏览器默认的搜索引擎,来合成新的带搜索关键字的 URL。
  • 如果判断输入内容符合 URL 规则,比如输入的是 juejin.cn,那么地址栏会根据规则,把这段内容加上协议,合成为完整的 URL,如 juejin.cn。

当用户输入关键字并键入回车之后,这意味着当前页面即将要被替换成新的页面,不过在这个流程继续之前,浏览器还给了当前页面一次执行 beforeunload 事件的机会,beforeunload 事件允许页面在退出之前执行一些数据清理操作,还可以询问用户是否要离开当前页面,比如当前页面可能有未提交完成的表单等情况,因此用户可以通过 beforeunload 事件来取消导航,让浏览器不再执行任何后续工作。

当前页面没有监听 beforeunload 事件或者同意了继续后续流程,那么浏览器便进入loading的状态:

URL 请求过程

接下来,便进入了页面资源请求过程。这时,浏览器进程会通过进程间通信(IPC)把 URL 请求发送至网络进程,网络进程接收到 URL 请求后,会在这里发起真正的 URL 请求流程。

  • 网络进程会查找本地缓存是否缓存了该资源。如果有缓存资源,那么直接返回资源给浏览器进程;如果在缓存中没有查找到资源,那么直接进入网络请求流程。
  • 请求前的第一步是要进行 DNS 解析,以获取请求域名的服务器 IP 地址。如果请求协议是 HTTPS,那么还需要建立 TLS 连接。
  • 利用 IP 地址和服务器建立 TCP 连接。连接建立之后,浏览器端会构建请求行、请求头等信息,并把和该域名相关的 Cookie 等数据附加到请求头中,然后向服务器发送构建的请求信息。服务器接收到请求信息后,会根据请求信息生成响应数据(包括响应行、响应头和响应体等信息),并发给网络进程。等网络进程接收了响应行和响应头之后,就开始解析响应头的内容了。

重定向

在接收到服务器返回的响应头后,网络进程开始解析响应头,如果发现返回的状态码是 301 或者 302,那么说明服务器需要浏览器重定向到其他 URL。这时网络进程会从响应头的 Location 字段里面读取重定向的地址,然后再发起新的 HTTP 或者 HTTPS 请求,一切又重头开始了。

在导航过程中,如果服务器响应行的状态码包含了 301、302 一类的跳转信息,浏览器会跳转到新的地址继续导航;如果响应行是 200,那么表示浏览器可以继续处理该请求。

响应数据类型处理

URL 请求的数据类型,有时候是一个下载类型,有时候是正常的 HTML 页面,那么浏览器是如何区分它们呢?

通过HTTP头中Content-Type字段, 它告诉浏览器服务器返回的响应体数据是什么类型,然后浏览器会根据 Content-Type 的值来决定如何显示响应体的内容。

image.png Content-type 的值是 text/html,这就是告诉浏览器,服务器返回的数据是 HTML 格式。

image.png Content-Type 的值是 application/octet-stream,显示数据是字节流类型的,通常情况下,浏览器会按照下载类型来处理该请求。

根据content-type字段值得不同, 若为application/octet-stream,就会交给浏览器的下载管理器,url的导航流程终止 若为application/html,就会进行导航流程

准备渲染进程

默认情况下,Chrome 会为每个页面分配一个渲染进程,也就是说,每打开一个新页面就会配套创建一个新的渲染进程。但是,也有一些例外,在某些情况下,浏览器会让多个页面直接运行在同一个渲染进程中。

那什么情况下多个页面会同时运行在一个渲染进程中呢?

Chrome 的默认策略是,每个标签对应一个渲染进程。但如果从一个页面打开了另一个新页面,而新页面和当前页面属于同一站点(same-site:协议和根域名相同就叫做同一站点)的话,那么新页面会复用父页面的渲染进程。官方把这个默认策略叫 process-per-site-instance。

总结来说,打开一个新页面采用的渲染进程策略就是:

  • 通常情况下,打开新的页面都会使用单独的渲染进程;
  • 如果从 A 页面打开 B 页面,且 A 和 B 都属于同一站点的话,那么 B 页面复用 A 页面的渲染进程;如果是其他情况,浏览器进程则会为 B 创建一个新的渲染进程。

提交文档

渲染进程准备好之后,还不能立即进入文档解析状态,因为此时的文档数据还在网络进程中,并没有提交给渲染进程,所以下一步就进入了提交文档阶段。所谓提交文档,就是指浏览器进程将网络进程接收到的 HTML 数据提交给渲染进程,具体流程是这样的:

  • 大哥大(浏览器进程)接收到小弟(网络进程)响应头数据后,通知小弟(渲染进程)(提交文档),让其与网络进程建立管道通讯,
  • 收到大哥大的命令,小弟(渲染进程)赶紧与小弟(网络进程)建立数据管道
  • 渲染进程接收完网络进程的数据后,赶紧给大哥大(浏览器进程)汇报(确认提交)
  • 大哥大知道小弟处理好琐事了,开始做小弟们做不了的事,更新浏览器界面状态 包括 安全状态、 地址栏 URL、前进后退的历史状态 、更新 Web 页面。

渲染阶段

一旦文档被提交,渲染进程便开始页面解析和子资源加载了,当页面生成完成,渲染进程会发送一个消息给浏览器进程,浏览器接收到消息后,会停止标签图标上的加载动画。

05 | 渲染流程:HTML、CSS和JavaScript,是如何变成页面的?

HTML、CSS 和 JavaScript 的含义

image.png

  • HTML 的内容是由标记和文本组成。标记也称为标签
  • CSS 又称为层叠样式表,是由选择器和属性组成
  • JavaScript(简称为 JS),使用它可以使网页的内容“动”起来

由于渲染机制过于复杂,所以渲染模块在执行过程中会被划分为很多子阶段,输入的 HTML 经过这些子阶段,最后输出像素。我们把这样的一个处理流程叫做渲染流水线,其大致流程如下图所示: image.png 按照渲染的时间顺序,流水线可分为如下几个子阶段:构建 DOM 树、样式计算、布局阶段、分层、绘制、分块、光栅化和合成。

构建 DOM 树

为什么要构建 DOM 树呢?这是因为浏览器无法直接理解和使用 HTML,所以需要将 HTML 转换为浏览器能够理解的结构——DOM 树。

来看看 DOM 树的构建过程,你可以参考下图:

image.png 从图中可以看出,构建 DOM 树的输入内容是一个非常简单的 HTML 文件,然后经由 HTML 解析器解析,最终输出树状结构的 DOM。

为了更加直观地理解 DOM 树,你可以打开 Chrome 的“开发者工具”,选择“Console”标签来打开控制台,然后在控制台里面输入“document”后回车,这样你就能看到一个完整的 DOM 树结构,如下图所示: image.png 图中的 document 就是 DOM 结构,你可以看到,DOM 和 HTML 内容几乎是一样的,但是和 HTML 不同的是,DOM 是保存在内存中树状结构,可以通过 JavaScript 来查询或修改其内容。

通过 JavaScript 来修改 DOM 的内容

document.getElementsByTagName("p")[0].innerText = "black"

DOM 的第一个 p 节点的内容成功被修改,同时页面中的内容也被修改了。

样式计算(Recalculate Style)

样式计算的目的是为了计算出 DOM 节点中每个元素的具体样式,分为以下3步:

1. 把 CSS 转换为浏览器能够理解的结构

image.png 从图中可以看出,CSS 样式来源主要有三种:

  • 通过 link 引用的外部 CSS 文件
  • style标签内的 CSS
  • 元素的 style 属性内嵌的 CSS

和 HTML 文件一样,浏览器也是无法直接理解这些纯文本的 CSS 样式,所以当渲染引擎接收到 CSS 文本时,会执行一个转换操作将 CSS 文本转换为浏览器可以理解的结构——styleSheets

为了加深理解,你可以在 Chrome 控制台中查看其结构,只需要在控制台中输入 document.styleSheets,然后就看到如下图所示的结构:

image.png 从图中可以看出,这个样式表包含了很多种样式,渲染引擎会把获取到的 CSS 文本全部转换为 styleSheets 结构中的数据,并且该结构同时具备了查询和修改功能,这会为后面的样式操作提供基础。

2.转换样式表中的属性值,使其标准化

body { font-size: 2em }
p {color:blue;}
span  {display: none}
div {font-weight: bold}
div  p {color:green;}
div {color:red; }

可以看到上面的 CSS 文本中有很多属性值,如 2em、blue、bold,这些类型数值不容易被渲染引擎理解,所以需要将所有值转换为渲染引擎容易理解的、标准化的计算值,这个过程就是属性值标准化。

image.png

上图是属性值标准化映射。

3. 计算出 DOM 树中每个节点的具体样式

接下来就需要计算 DOM 树中每个节点的样式属性了,这就涉及到CSS的继承规则和层叠规则了

CSS 继承

首先是 CSS 继承。CSS 继承就是每个 DOM 节点都包含有父节点的样式。 比如:

body { font-size: 20px }
p {color:blue;}
span  {display: none}
div {font-weight: bold;color:red}
div  p {color:green;}

这张样式表最终应用到 DOM 节点的效果如下图所示: image.png 为了加深你对 CSS 继承的理解,打开 Chrome 的“开发者工具”,选择第一个“element”标签,再选择“style”子标签,界面如下:

image.png 这个界面展示的信息很丰富,大致可描述为如下。

  • 首先,可以选择要查看的元素的样式(位于图中的区域 2 中),在图中的第 1 个区域中点击对应的元素,就可以在下面的区域查看该元素的样式了。比如这里我们选择的元素是p标签,位于 html.body.div. 这个路径下面。
  • 其次,可以从样式来源(位于图中的区域 3 中)中查看样式的具体来源信息,看看是来源于样式文件,还是来源于 UserAgent 样式表。UserAgent 样式,它是浏览器提供的一组默认样式,如果你不提供任何样式,默认使用的就是 UserAgent 样式
  • 最后,可以通过区域 2 和区域 3 来查看样式继承的具体过程。

以上就是 CSS 继承的一些特性,样式计算过程中,会根据 DOM 节点的继承关系来合理计算节点样式。

CSS 层叠

层叠是 CSS 的一个基本特征,它是一个定义了如何合并来自多个源的属性值的算法。它在 CSS 处于核心地位,CSS 的全称“层叠样式表”正是强调了这一点

总之,样式计算阶段的目的是为了计算出 DOM 节点中每个元素的具体样式,在计算过程中需要遵守 CSS 的继承和层叠两个规则。这个阶段最终输出的内容是每个 DOM 节点的样式,并被保存在 ComputedStyle 的结构内。

如果你想了解每个 DOM 元素最终的计算样式,可以打开 Chrome 的“开发者工具”,选择第一个“element”标签,然后再选择“Computed”子标签,如下图所示:

image.png

布局阶段

那么接下来就需要计算出 DOM 树中可见元素的几何位置,我们把这个计算过程叫做布局。

结合下图来看看布局树的构造过程:

image.png

从上图可见,dom树中所有不可见的节点都没有包含到布局树中,所以,为了构建布局树,浏览器大致做了下面的工作:

遍历 DOM 树中的所有可见节点,并把这些节点加到布局树中;而不可见的节点会被布局树忽略掉,如 head 标签下面的全部内容,再比如 body.p.span 这个元素,因为它的属性包含 dispaly:none,所以这个元素也没有被包进布局树。

总结

  • 浏览器不能直接理解 HTML 数据,所以第一步需要将其转换为浏览器能够理解的 DOM 树结构;
  • 生成 DOM 树后,还需要根据 CSS 样式表,来计算出 DOM 树所有节点的样式;
  • 最后计算 DOM 元素的布局信息,使其都保存在布局树中。