【线性代数基础进阶】向量-补充+练习 & 线性方程组-练习

35 阅读2分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

概念和定理

向量

α1,α2,,αr\alpha_{1},\alpha_{2},\cdots,\alpha_{r}α1,α2,,αr,,αs(其中sr)\alpha_{1},\alpha_{2},\cdots,\alpha_{r},\cdots,\alpha_{s}(其中s\geq r),称α1,α2,,αr\alpha_{1},\alpha_{2},\cdots,\alpha_{r}α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}的部分组,α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}是整体组

 

向量组α1=(a11,a21,,ar1)T,α2=(a12,a22,,ar2)T,,αm1=(a1m,a2m,,arm)T\alpha_{1}=(a_{11},a_{21},\cdots,a_{r1})^{T},\alpha_{2}=(a_{12},a_{22},\cdots,a_{r2})^{T},\cdots,\alpha_{m1}=(a_{1m},a_{2m},\cdots,a_{rm})^{T}α1~=(a11,a21,,ar1,,as1)T,α2~=(a12,a22,,ar2,,as2)T,,αm~=(a1m,a2m,,arm,,asm)T\widetilde{\alpha_{1}}=(a_{11},a_{21},\cdots,a_{r1},\cdots,a_{s1})^{T},\widetilde{\alpha_{2}}=(a_{12},a_{22},\cdots,a_{r2},\cdots,a_{s2})^{T},\cdots,\widetilde{\alpha_{m}}=(a_{1m},a_{2m},\cdots,a_{rm},\cdots,a_{sm})^{T},则称α1~,α2~,,αm~\widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}}为向量组α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}的延伸组(或称α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}α1~,α2~,,αm~\widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}}的缩短组)

 

定理:

任何部分组α1,α2,,αr\alpha_{1},\alpha_{2},\cdots,\alpha_{r}相关\Rightarrow整体组

α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}相关

整体组α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}无关

\Rightarrow任何部分组

α1,α2,,αr\alpha_{1},\alpha_{2},\cdots,\alpha_{r}无关,反之都不成立

 

定理:

α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}线性无关\Rightarrow延伸组α1~,α2~,,αm~\widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}}线性无关

α1~,α2~,,αm~\widetilde{\alpha_{1}},\widetilde{\alpha_{2}},\cdots,\widetilde{\alpha_{m}}线性相关α1,α2,,αm\Rightarrow \alpha_{1},\alpha_{2},\cdots,\alpha_{m}线性相关

 

向量组的秩

向量组的极大线性无关组的向量个数称为向量组的秩,记为r(α1,α2,,αs)r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s})

 

线性相关例题进一步说明

例:

已知α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性无关,证明α1+α2,α2+α3,α3+α1\alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1}线性无关

 

已知某向量组α1,α2,,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}线性无关,推新的向量组β1,β2,,βs\beta_{1},\beta_{2},\cdots,\beta_{s}线性无关大致思路,设

k1β1+k2β2++ksβs=0k_{1}\beta_{1}+k_{2}\beta_{2}+\cdots+k_{s}\beta_{s}=0

α1,α2,,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}化简,即类似

m1α1+m2α2++mnαn=0m_{1}\alpha_{1}+m_{2}\alpha_{2}+\cdots+m_{n}\alpha_{n}=0

其中m1,,mnm_{1},\cdots,m_{n}k1,,ksk_{1},\cdots,k_{s}表示,通过条件

b1α1+b2α2++bnαn=0b_{1}\alpha_{1}+b_{2}\alpha_{2}+\cdots+b_{n}\alpha_{n}=0

只有当b1=b2==bn=0b_{1}=b_{2}=\cdots=b_{n}=0时上式成立,证明

k1=k2==ks=0k_{1}=k_{2}=\cdots=k_{s}=0

 

k1(α1+α2)+k2(α2+α3)+k3(α3+α1)=0(k1+k3)α1+(k1+k2)α2+(k2+k3)α3=0 \begin{aligned} k_{1}(\alpha_{1}+\alpha_{2})+k_{2}(\alpha_{2}+\alpha_{3})+k_{3}(\alpha_{3}+\alpha_{1})&=0\\ (k_{1}+k_{3})\alpha_{1}+(k_{1}+k_{2})\alpha_{2}+(k_{2}+k_{3})\alpha_{3}&=0 \end{aligned}

因为α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性无关

{k1+k3=0k1+k2=0k2+k3=0(1) \begin{cases} k_{1}+k_{3}=0 \\ k_{1}+k_{2}=0 \\ k_{2}+k_{3}=0 \end{cases}\tag{1}

101110011=20 \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}=2\ne0

齐次方程组(1)(1)只有00解,即必有k1=0,k2=0,k3=0k_{1}=0,k_{2}=0,k_{3}=0,因此α1+α2,α2+α3,α3+α1\alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1}线性无关

 

已知α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性无关,无法证明α1α2,α2α3,α3α1\alpha_{1}-\alpha_{2},\alpha_{2}-\alpha_{3},\alpha_{3}-\alpha_{1}线性无关

 

k1(α1α2)+k2(α2α3)+k3(α3α1)=0(k1k3)α1+(k2k1)α2+(k3k2)α3=0 \begin{aligned} k_{1}(\alpha_{1}-\alpha_{2})+k_{2}(\alpha_{2}-\alpha_{3})+k_{3}(\alpha_{3}-\alpha_{1})&=0\\ (k_{1}-k_{3})\alpha_{1}+(k_{2}-k_{1})\alpha_{2}+(k_{3}-k_{2})\alpha_{3}&=0 \end{aligned}

因为α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性无关

{k1k3=0k2k1=0k3k2=0(1) \begin{cases} k_{1}-k_{3}=0 \\ k_{2}-k_{1}=0 \\ k_{3}-k_{2}=0 \end{cases}\tag{1}

101110011=0 \begin{vmatrix} 1 & 0 & -1 \\-1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix}=0

齐次方程组(1)(1)有非零解,无法证明k1=0,k2=0,k3=0k_{1}=0,k_{2}=0,k_{3}=0,因此无法证明α1α2,α2α3,α3α1\alpha_{1}-\alpha_{2},\alpha_{2}-\alpha_{3},\alpha_{3}-\alpha_{1}线性无关

 

例:向量组(1):α1,α2,α3;(2):α1,α2,α3,α4;(3):α1,α2,α3,α5(1):\alpha_{1},\alpha_{2},\alpha_{3};(2):\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4};(3):\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5},若秩r(1)=3,r(2)=3,r(3)=4r(1)=3,r(2)=3,r(3)=4,则r(α1,α2,α3,α4+α5)=()r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=()

 

r(1)=3r(1)=3知,α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性无关

r(2)=4r(2)=4知,α1,α2,α3,α4\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}线性相关

α4\alpha_{4}可以由

 

以下可以用分析或计算

 

α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出,那么向量组α1,α2,α3,α5\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}α1,α2,α3,α4+α5\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5}可以相互线性表示,即向量组等价

所以r(α1,α2,α3,α4+α5)=r(3)=4r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=r(3)=4

或用计算

α4=k1α1+k2α2+k3α3\alpha_{4}=k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3},则

(α1,α2,α3,α4+α5)=(α1,α2,α3,k1α1+k2α2+k3α3+α5)=(α1,α2,α3,α5)(100k1010k2001k30001) \begin{aligned} (\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})&=(\alpha_{1},\alpha_{2},\alpha_{3},k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3}+\alpha_{5})\\ &=(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5})\begin{pmatrix} 1 & 0 & 0 & k_{1} \\ 0 & 1 & 0 & k_{2} \\ 0 & 0 & 1 & k_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}

由于矩阵(100k1010k2001k30001)\begin{pmatrix}1 & 0 & 0 & k_{1} \\ 0 & 1 & 0 & k_{2} \\ 0 & 0 & 1 & k_{3} \\ 0 & 0 & 0 & 1\end{pmatrix}可逆,故r(α1,α2,α3,α4+α5)=r(3)=4r(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}+\alpha_{5})=r(3)=4

 

矩阵的秩

例:设A,BA,B都是nn阶非零矩阵,且AB=OAB=O,证明AABB的秩都小于nn

 

不会0_o,以后会补上的

正交规范化、正交矩阵在特征值和特征向量里

 

Ax=bAx=b解的性质

例:设α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}是四元非齐次线性方程组Ax=bAx=b的三个就行了,且秩r(A)=3r(A)=3α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T\alpha_{1}=(1,2,3,4)^{T},\alpha_{2}+\alpha_{3}=(0,1,2,3)^{T},则方程组Ax=bAx=b的通解是()

 

由于nr(A)=43=1n-r(A)=4-3=1,所以方程组通解形式为α+kη\alpha+k \eta,现在特解已知可取α1\alpha_{1},下面就是应找出导出组Ax=0Ax=0的一个非零解

因为Aai=b,(i=1,2,3)A a_{i}=b,(i=1,2,3),有A[2α1(α2+α3)]=0A[2\alpha_{1}-(\alpha_{2}+\alpha_{3})]=0,即

2α1(α2+α3)=(2,3,4,5)T 2\alpha_{1}-(\alpha_{2}+\alpha_{3})=(2,3,4,5)^{T}

Ax=0Ax=0的一个非零解,于是方程组通解为(1,2,3,4)T+k(2,3,4,5)T(1,2,3,4)^{T}+k(2,3,4,5)^{T}kk是任意常数