【高等数学基础进阶】定积分与反常积分-定积分

73 阅读3分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

定积分概念

定积分的定义:

abf(x)dxlimλ0i=1nf(ξi)Δxi\int^{b}_{a}f(x)dx\triangleq\lim_{\lambda\to0}\sum\limits^{n}_{i=1}f(\xi_{i})\Delta x_{i}

注:

  1. λ0\lambda\to0nn\to \infty不等价
  2. abf(x)dx\int^{b}_{a}f(x)dx仅与f(x)f(x)[a,b][a,b]有关;abf(x)Dx=abf(t)dt\int^{b}_{a}f(x)Dx=\int^{b}_{a}f(t)dt
  3. 极限limλ0i=1nf(ξi)Δxi\lim\limits_{\lambda\to 0}\sum\limits^{n}_{i=1}f(\xi_{i})\Delta x_{i}ξi\xi_{i}的取法和区间[a,b][a,b]的分发无关 因此,有
    01f(x)dx=limλ0i=1nf(ξi)Δxi=limn1ni=1nf(in)\int^{1}_{0}f(x)dx=\lim_{\lambda\to0}\sum\limits^{n}_{i=1}f(\xi_{i})\Delta x_{i}=\lim_{n\to \infty} \frac{1}{n}\sum\limits^{n}_{i=1}f(\frac{i}{n})

定积分存在的充分条件

  • f(x)f(x)[a,b][a,b]上连续
  • f(x)f(x)[a,b][a,b]上有界且只有有限个间断点
  • f(x)f(x)[a,b][a,b]上仅有有限个第一类间断点

定积分的几何意义

定积分的性质

不等式

  • f(x)g(x)f(x)\leq g(x),则abf(x)dxabg(x)dx\int^{b}_{a}f(x)dx\leq \int^{b}_{a}g(x)dx
  • 估值性:若f(x)f(x)[a,b][a,b]上连续,则m(ba)abf(x)dxM(ba)m(b-a)\leq\int^{b}_{a}f(x)dx\leq M(b-a)
  • abf(x)dxabf(x)dx\int^{b}_{a}f(x)dx\leq \int^{b}_{a}|f(x)|dx

中值定理

  • f(x)f(x)[a,b][a,b]上连续,则abf(x)dx=f(ξ)(ba),a<ξ<b(此处书上写的是aξb)\int^{b}_{a}f(x)dx=f(\xi)(b-a),a<\xi<b(此处书上写的是a\leq \xi\leq b) 证明:
    F(b)F(a)=右边=拉格朗日中值定理左边=F(ξ)(ba)F(b)-F(a)=右边\overset{拉格朗日中值定理}{=}左边=F'(\xi)(b-a)
  • f(x),g(x)f(x),g(x)[a,b][a,b]上连续,g(x)g(x)不变号,则abf(x)g(x)dx=f(ξ)abdx,aξb\int^{b}_{a}f(x)g(x)dx=f(\xi)\int^{b}_{a}dx,a\leq \xi\leq b

积分上限的函数

axf(t)dt\int^{x}_{a}f(t)dt

定理:设f(x)f(x)[a,b][a,b]上连续,则axf(t)dt\int^{x}_{a}f(t)dt[a,b][a,b]上可导,且

(axf(t)dt)=f(x)(\int^{x}_{a}f(t)dt)'=f(x)

一般结论:

(ϕ(x)ψ(x)f(t)dt)=f(ψ(x))ψ(x)f(ϕ(x))ϕ(x)(\int^{\psi(x)}_{\phi(x)}f(t)dt)'=f(\psi(x))\psi'(x)-f(\phi(x))\phi'(x)

定积分的计算

  • 牛顿-莱布尼茨公式abf(x)dx=F(b)F(a)\int^{b}_{a}f(x)dx=F(b)-F(a)
  • 换元法abf(x)dx=αβf(ϕ(t))ϕ(t)dt\int^{b}_{a}f(x)dx=\int^{\beta}_{\alpha}f(\phi(t))\phi'(t)dt
  • 分部积分法abudv=uvababvdu\int^{b}_{a}udv=uv|^{b}_{a}-\int^{b}_{a}vdu
  • 利用奇偶性aaf(x)dx={0,f(x)为奇函数20af(x)dxf(x)为偶函数\int^{a}_{-a}f(x)dx=\begin{cases}0,&f(x)为奇函数\\2\int^{a}_{0}f(x)dx&f(x)为偶函数\end{cases}
  • 利用周期性aa+Tf(x)dx=0Tf(x)dx\int^{a+T}_{a}f(x)dx=\int^{T}_{0}f(x)dx
  • 利用公式
    • 0π2sinnxdx=0π2cosnxdx={n1nn3n212π2n为偶数n1nn3n223n为奇数\int^{\frac{\pi}{2}}_{0}\sin^{n}xdx=\int^{\frac{\pi}{2}}_{0}\cos^{n}xdx=\begin{cases} \frac{n-1}{n} \frac{n-3}{n-2}\cdots \frac{1}{2} \frac{\pi}{2}&n为偶数\\ \frac{n-1}{n} \frac{n-3}{n-2}\cdots \frac{2}{3}&n为奇数\end{cases}
    • 0πxf(sinx)dx=π20πf(sinx)dx\int^{\pi}_{0}xf(\sin x)dx=\frac{\pi}{2}\int^{\pi}_{0}f(\sin x)dx

0πxf(sinx)dx=π20πf(sinx)dx\int^{\pi}_{0}xf(\sin x)dx=\frac{\pi}{2}\int^{\pi}_{0}f(\sin x)dx要注意,f(sinx)f(\sin x)指的是,能用sinx\sin x表示的函数都可以,例如cos2x=12sin2x\cos^{2}x=1-2\sin^{2}x,但cosx\cos x就不可以,因为在(0,π),cosx(0,\pi) ,\cos x有正有负,cosx=1sin2x|\cos x|=\sqrt{1-\sin^{2} x},而cosx1sin2x\cos x\ne \sqrt{1-\sin^{2} x}

常考题型与典型例题

定积分的概念、性质与几何意义

例1:limn(1n+1+1n+2++1n+n)=()\lim\limits_{n\to \infty}(\frac{1}{n+1}+ \frac{1}{n+2}+\cdots+ \frac{1}{n+n})=()

对于abf(x)dx=limλ0i=1nf(ξi)Δxi=limn1ni=1nf(ξi)(ba)\int^{b}_{a}f(x)dx=\lim\limits_{\lambda\to0}\sum\limits^{n}_{i=1}f(\xi_{i})\Delta x_{i}=\lim\limits_{n\to \infty} \frac{1}{n}\sum\limits^{n}_{i=1}f(\xi_{i})(b-a) 上式当区间方法选择nn等分时成立,由于此时Δxi=ban\Delta x_{i}= \frac{b-a}{n} 所以当提出1n\frac{1}{n}时,通过f(ξi)(ba)f(\xi_{i})(b-a)就可以看出积分区间和被积函数

原式=limn1n(11+1n+11+2n++11+nn)=0111+xdx=ln(1+x)01=ln2\begin{aligned} 原式&=\lim_{n\to \infty} \frac{1}{n}( \frac{1}{1+\frac{1}{n}}+ \frac{1}{1+\frac{2}{n}}+\cdots+ \frac{1}{1+\frac{n}{n}})\\ &=\int^{1}_{0} \frac{1}{1+x}dx\\ &=\ln(1+x)|^{1}_{0}\\ &=\ln2 \end{aligned}

本题11+1n,11+2n,,11+nn\frac{1}{1+\frac{1}{n}},\frac{1}{1+\frac{2}{n}},\cdots,\frac{1}{1+\frac{n}{n}}显然只有1n,2n,,nn\frac{1}{n},\frac{2}{n},\cdots,\frac{n}{n}在变化,因此被积函数为11+x\frac{1}{1+x}积分区间为1n\frac{1}{n}nn\frac{n}{n},即(0,1)(0,1)

例2:limnn(11+n2+122+n2++1n2+n2)=()\lim\limits_{n\to \infty}n(\frac{1}{1+n^{2}}+ \frac{1}{2^{2}+n^{2}}+\cdots+ \frac{1}{n^{2}+n^{2}})=()

原式=limn1n[11+(1n)2+11+(2n)2++11+(nn)2]=0111+x2dx=arctanx01=π4\begin{aligned} 原式&=\lim\limits_{n\to\infty} \frac{1}{n}[\frac{1}{1+(\frac{1}{n})^{2}}+ \frac{1}{1+(\frac{2}{n})^{2}}+\cdots+ \frac{1}{1+(\frac{n}{n})^{2}}]\\ &=\int^{1}_{0} \frac{1}{1+x^{2}}dx\\ &=\arctan x|^{1}_{0}\\ &=\frac{\pi}{4} \end{aligned}

关于nn项和的极限用什么,例如本题分母不变项变化的叫做主体即n2n^{2},变化的叫变体即12,22,,n21^{2},2^{2},\cdots,n^{2},如果变体主体n{0夹逼原理0定积分定义\frac{变体}{主体}\overset{n\to \infty}{\longrightarrow}\begin{cases}0&夹逼原理\\\ne0&定积分定义\end{cases}

例3:如图,连续函数y=f(x)y=f(x)在区间[3,2],[2,3][-3,-2],[2,3]上的图形分别是直径为11的上、下半圆周,在区间[2,0],[0,2][-2,0],[0,2]的图形分别是直径为22的下、上半圆周。设F(x)=0xf(t)dtF(x)=\int^{x }_{0}f(t)dt,则证明F(3)=34F(2)F(-3)= \frac{3}{4}F(2)

![[附件/Pasted image 20220827164059.png|250]]

F(3)=F(3)=03f(x)dx=π2π2(12)2F(2)=02f(x)dx=π2\begin{aligned} F(3)&=F(-3)=\int^{3 }_{0}f(x)dx=\frac{\pi}{2}- \frac{\pi}{2}\left(\frac{1}{2}\right)^{2}\\ F(2)&=\int^{2 }_{0}f(x)dx=\frac{\pi}{2} \end{aligned}

得证

补充一个结论 f(x)f(x)是奇函数axf(t)dt\rightarrow\int^{x }_{a}f(t)dt偶函数 f(x)f(x)是偶函数0xf(t)dt\rightarrow\int^{x }_{0}f(t)dt奇函数

例4:设二阶可导函数f(x)f(x)满足f(1)=f(1)=1,f(0)=1f(1)=f(-1)=1,f(0)=-1,且f(x)>0f''(x)>0,证明10f(x)dx\int^{0 }_{-1}f(x)dx

用几何法,选一个特殊函数f(x)=2x21f(x)=2x^{2}-1即可,或者自行画图,只要满足f(1)=f(1)=1,f(0)=1f(1)=f(-1)=1,f(0)=-1,且为凹函数(由于f(x)>0f''(x)>0

例5:设函数f(x)f(x)[0,1][0,1]上连续,(0,1)(0,1)内可导,且3231f(x)dx=f(0)3\int^{1 }_{\frac{2}{3}}f(x)dx=f(0),证明在(0,1)(0,1)内存在一点cc,使f(c)=0f'(c)=0

f(0)=3231f(x)dx=3(123)f(ξ)=f(ξ),ξ(23,1)\begin{aligned} f(0)=3\int^{1 }_{\frac{2}{3}}f(x)dx=3(1- \frac{2}{3})f(\xi)=f(\xi),\xi\in(\frac{2}{3},1) \end{aligned}

因此,存在一点c(0,ξ)c\in(0,\xi)使f(c)=0f'(c)=0

定积分计算

例6:π2π2(x3+sin2x)cos2xdx=()\int^{\frac{\pi}{2} }_{- \frac{\pi}{2}}(x^{3}+\sin^{2}x)\cos^{2}xdx=()

原式=2π2π2sin2xcos2xdx=20π2sin2x(1sin2x)dx=2(12π23412π2)=π8\begin{aligned} 原式&=2\int^{\frac{\pi}{2} }_{- \frac{\pi}{2}}\sin^{2}x\cos^{2}xdx\\ &=2\int^{\frac{\pi}{2} }_{0}\sin^{2}x(1-\sin^{2}x)dx\\ &=2(\frac{1}{2} \frac{\pi}{2}- \frac{3}{4} \frac{1}{2} \frac{\pi}{2})\\ &=\frac{\pi}{8} \end{aligned}

例7:ππ(sin3x+π2x2)dx\int^{\pi }_{-\pi}(\sin^{3}x+\sqrt{\pi^{2}-x^{2}})dx=()

有公式0aa2x2dx=π4a2\int^{a }_{0}\sqrt{a^{2}-x^{2}dx}=\frac{\pi}{4}a^{2} 画图x2+y2=a2x^{2}+y^{2}=a^{2}第一象限面积即为所求 偏心圆有0a2axx2dx=π4a2\int^{a }_{0}\sqrt{2ax-x ^{2}}dx=\frac{\pi}{4}a ^{2}

原式=20ππx2dx=2π4π2=π32\begin{aligned} 原式&=2\int^{\pi }_{0}\sqrt{\pi-x^{2}}dx\\ &=2 \frac{\pi}{4}\pi^{2}\\ &=\frac{\pi^{3}}{2} \end{aligned}

例8:012xx2dx=()\int^{1 }_{0}\sqrt{2x-x^{2}}dx=()

原式=011(x1)2dx=x1=sintπ20cos1tdt=0π2cos2tdt=12π2=π4\begin{aligned} 原式&=\int^{1 }_{0}\sqrt{1-(x-1)^{2}}dx\\ &\overset{x-1=\sin t}{=}\int^{0 }_{- \frac{\pi}{2}}\cos ^{1}tdt\\ &=\int^{\frac{\pi}{2} }_{0}\cos ^{2}tdt\\ &=\frac{1}{2} \frac{\pi}{2}\\ &=\frac{\pi}{4} \end{aligned}

或者用0a2axx2dx=π4a2\int^{a }_{0}\sqrt{2ax-x ^{2}}dx=\frac{\pi}{4}a ^{2}直接得到结果

例9:计算01xarcsinxdx\int^{1 }_{0}x \arcsin xdx

原式=1201arcsinxdx2=12x2arcsinx011201x21x2dx不是出现了x2就可以换x2换完dx也要换这里也可以选择令x=sint三角换元的方法=12x2arcsinx011201x21+11x2dx=π412(011x2dx+arcsin01)=π412(π4+π2)=π8\begin{aligned} 原式&=\frac{1}{2}\int^{1 }_{0}\arcsin xdx^{2}\\ &=\frac{1}{2}x^{2}\arcsin x \Big|^{1 }_{0}- \frac{1}{2}\int^{1 }_{0} \frac{x^{2}}{\sqrt{1-x ^{2}}}dx\\ &不是出现了x ^{2}就可以换x ^{2}换完dx也要换\\ &这里也可以选择令x=\sin t三角换元的方法\\ &=\frac{1}{2}x^{2}\arcsin x \Big|^{1 }_{0}- \frac{1}{2}\int^{1 }_{0} \frac{x^{2}-1+1}{\sqrt{1-x ^{2}}}dx\\ &=\frac{\pi}{4}- \frac{1}{2}\left(-\int^{1 }_{0}\sqrt{1-x^{2}dx+\arcsin \Big|^{1 }_{0}}\right)\\ &=\frac{\pi}{4}- \frac{1}{2}\left(- \frac{\pi}{4}+ \frac{\pi}{2}\right)\\ &= \frac{\pi}{8} \end{aligned}

例10:设f(x)=0xsintπtdtf(x)=\int^{x }_{0} \frac{\sin t}{\pi-t}dt,计算0πf(x)dx\int^{\pi }_{0}f(x)dx

这类题经常f(x)f(x)是积不出的积分,所以考虑导数,在分布积分中有导数

原式=xf(x)0π0πxsinxπxdx=π0πsintπtdt0πxsinxπxdx=0π(πx)sinxπxdx=0πsinxdx=2\begin{aligned} 原式&=xf(x)\Big|^{\pi }_{0}-\int^{\pi }_{0}\frac{x \sin x}{\pi-x}dx\\ &=\pi \int^{\pi }_{0}\frac{\sin t}{\pi -t}dt-\int^{\pi }_{0}\frac{x \sin x}{\pi -x}dx\\ &=\int^{\pi }_{0}\frac{(\pi -x)\sin x}{\pi -x}dx\\ &=\int^{\pi }_{0}\sin xdx\\ &=2 \end{aligned}

仔细观察,可以有如下变化简化计算

原式=0πf(x)d(xπ)=(xπ)f(x)0π0π(xπ)sinxπxdx这样的好处是(xπ)f(x)0π上下限都为0,只需要计算后面的积分即可=0πsinxdx=2\begin{aligned} 原式&=\int^{\pi }_{0}f(x)d(x-\pi )\\ &=(x-\pi )f(x)\Big|^{\pi }_{0}-\int^{\pi }_{0}\frac{(x-\pi )\sin x}{\pi -x}dx\\ &这样的好处是(x-\pi )f(x)\Big|^{\pi }_{0}上下限都为0,只需要计算后面的积分即可\\ &=\int^{\pi }_{0}\sin xdx\\ &=2 \end{aligned}

当然,二重积分交换一下积分次序也可以

变上限定积分

例11:设f(x)f(x)连续,试求下列函数的导数 exx2f(t)dt\int^{x^{2} }_{e^{x}}f(t)dt

(exx2f(t)dt)=f(x2)2xf(ex)ex\begin{aligned} \left(\int^{x^{2} }_{e^{x}}f(t)dt\right)'&=f(x ^{2})\cdot 2x-f(e^{x})e^{x}\\ \end{aligned}

0x(xt)f(t)dt\int^{x }_{0}(x-t)f(t)dt

0x(xt)f(t)dt=x0xf(t)dt0xtf(t)dt(0x(xt)f(t)dt)=0xf(t)dt+xf(x)xf(x)=0xf(t)dt\begin{aligned} \int^{x }_{0}(x-t)f(t)dt & =x \int^{x }_{0}f(t)dt-\int^{x }_{0}tf(t)dt\\ \left(\int^{x }_{0}(x-t)f(t)dt\right)'&=\int^{x }_{0}f(t)dt+xf(x)-xf(x)=\int^{x }_{0}f(t)dt \end{aligned}

0xcos(xt)2dt\int^{x }_{0}\cos (x-t)^{2}dt

0xcos(xt)2dt=xt=ux0cosu2(du)=0xcosu2du(0xcos(xt)2dt)=cosx2\begin{aligned} \int^{x }_{0}\cos (x-t)^{2}dt &\overset{x-t=u}{=}\int^{0 }_{x}\cos u^{2}(-du)=\int^{x }_{0}\cos u^{2}du\\ \left(\int^{x }_{0}\cos (x-t)^{2}dt\right)'&=\cos x^{2} \end{aligned}

12f(x+t)dt\int^{2 }_{1}f(x+t)dt

12f(x+t)dt=x+t=ux+1x+2f(u)du(12f(x+t)dt)=f(x+2)f(x+1)\begin{aligned} \int^{2 }_{1}f(x+t)dt &\overset{x+t=u}{=}\int^{x+2 }_{x+1}f(u)du\\ \left(\int^{2 }_{1}f(x+t)dt\right)'&=f(x+2)-f(x+1) \end{aligned}

例12:设f(x)f(x)连续,则ddx0xtf(x2t2)dt=()\frac{d}{dx}\int^{x}_{0}tf(x ^{2}-t^{2})dt=()

0xtf(x2t2)dt=x2t2=ux20f(u)(12du)=120x2f(u)duddx0xtf(x2t2)dt=12f(x2)2x=xf(x2)\begin{aligned} \int^{x}_{0}tf(x ^{2}-t ^{2})dt &\overset{x ^{2}- t ^{2}=u}{=}\int^{0}_{x ^{2}}f(u)(- \frac{1}{2}du)\\ &=\frac{1}{2}\int^{x ^{2}}_{0}f(u)du\\ \frac{d}{dx}\int^{x}_{0}tf(x ^{2}-t^{2})dt&=\frac{1}{2}f(x ^{2})\cdot 2x=xf(x ^{2}) \end{aligned}

例13:设x1x \geq -1,求1x(1t)dt\int^{x}_{-1}(1-|t|)dt

1x(1t)dt={1x(1+t)dt1x<010(1+t)dt+0x(1t)dtx0={12(1+x)21x<0112(1x)2x0\begin{aligned} \int^{x}_{-1}(1-|t|)dt&=\begin{cases} \int^{x}_{-1}(1+t)dt&-1\leq x<0\\ \int^{0}_{-1}(1+t)dt+\int^{x}_{0}(1-t)dt&x \geq 0 \end{cases}\\ &=\begin{cases} \frac{1}{2}(1+x)^{2}&-1\leq x<0\\ 1- \frac{1}{2}(1-x)^{2}&x \geq 0 \end{cases} \end{aligned}

例14:设函数f(x)={sinx0x<π2πx2π,F(x)=0xf(t)dtf(x)=\begin{cases}\sin x&0 \leq x<\pi \\2&\pi \leq x\leq2\pi \end{cases},F(x)=\int^{x}_{0}f(t)dt,说明F(x)F(x)x=πx=\pi可导

分段函数定积分如果分多段注意不要漏前面的

F(x)={0xsintdt0x<π0πsintdt+πx2dtπx2π={1cosx0x<π2+2(xπ)πx2π\begin{aligned} F(x)&=\left\{\begin{aligned}& \int^{x}_{0}\sin tdt&0\leq x<\pi\\ &\int^{\pi}_{0}\sin tdt+\int^{x}_{\pi}2dt&\pi\leq x\leq2\pi \end{aligned}\right.\\ &=\left\{\begin{aligned}&1-\cos x&0\leq x<\pi\\ &2+2(x-\pi)&\pi \leq x \leq 2 \pi\end{aligned}\right. \end{aligned}

F(π0)=2=F(π+0)=F(π)F(\pi-0)=2=F(\pi+0)=F(\pi)

因此F(x)F(x)x=πx=\pi连续

F+(π)=[2+2(xπ)]x=π=2F(π)=limxπ1cosx2xπ=limxπsinx1=0\begin{aligned} F'_{+}(\pi)&=[2+2(x-\pi)]'\Big|^{}_{x=\pi}=2\\ F'_{-}(\pi)&=\lim\limits_{x\to \pi^{-}}\frac{1-\cos x-2}{x-\pi}=\lim\limits_{x\to \pi^{-}}\frac{\sin x}{1}=0 \end{aligned}

F(x)F(x)x=0x=0不可导

例15:确定常数a,b,ca,b,c的值,使limx0axsinxbxln(1+t3)tdt=c(c0)\lim\limits_{x\to0}\frac{ax-\sin x}{\int^{x}_{b}\frac{\ln (1+t^{3})}{t}dt}=c(c \ne 0)

由于c0,axsinx0c\ne0,ax-\sin x\to0bxln(1+t3)dtt0b0ln(1+t3)tdt=0\int^{x}_{b}\frac{\ln (1+t^{3})dt}{t}\rightarrow 0\Rightarrow \int^{0}_{b}\frac{\ln (1+t^{3})}{t}dt=0 易验证ln(1+t3)t>0\frac{\ln (1+t^{3})}{t}>0,有

b=0b=0

因此

c=limx0axsinx0xln(1+t3)tdt=limx0acosxln(1+t3)x=limx0acosxx2\begin{aligned} c&=\lim\limits_{x\to0}\frac{ax-\sin x}{\int^{x}_{0}\frac{\ln (1+t^{3})}{t}dt}\\ &=\lim\limits_{x\to0}\frac{a-\cos x}{\frac{\ln (1+t^{3})}{x}}\\ &=\lim\limits_{x\to0}\frac{a-\cos x}{x^{2}} \end{aligned}

由于分母x20x^{2}\to 0,如果分子a10a-1\ne 0则原式\to \infty矛盾,因此a=1a=1

上式=limx01cosxx2=12=c上式=\lim\limits_{x\to0}\frac{1-\cos x}{x ^{2}}=\frac{1}{2}=c

例16:求极限limx0+0xxtetdtx3\begin{aligned}\lim\limits_{x\to0+}\frac{\int^{x}_{0}\sqrt{x-t}e^{t}dt}{\sqrt{x ^{3}}}\end{aligned}

定积分中如果xx被看做常数,则可以提出来,exe^{x}也是

0xxtetdt=xt=ux0uexu(du)=ex0xueudu原式=limx0+ex0xueudux3=limx0+xex32x=23\begin{aligned} \int^{x}_{0}\sqrt{x-t}e^{t}dt &\overset{x-t=u}{=}\int^{0}_{x}\sqrt{u}e^{x-u}(-du)=e^{x}\int^{x}_{0}\sqrt{u}e^{-u}du\\ 原式&=\lim\limits_{x\to0+}\frac{e^{x}\int^{x}_{0}\sqrt{u}e^{-u}du}{\sqrt{x ^{3}}}=\lim\limits_{x\to0+}\frac{\sqrt{x}e^{-x}}{\frac{3}{2}\sqrt{x}}=\frac{2}{3} \end{aligned}

也可以考虑积分中值定理,即abf(x)g(x)dx=f(ξ)abg(x)dx\begin{aligned}\int^{b}_{a}f(x)g(x)dx=f(\xi )\int^{b}_{a}g(x)dx\end{aligned}

注意该积分中值定理要求f(x),g(x)f(x),g(x)连续,且g(x)g(x)不变号

原式=limx0+eξ0xxtdtx3=limx0+23(xt)320xx3=limx0+23x32x32=23\begin{aligned} 原式&=\lim\limits_{x\to0+}\frac{e^{\xi }\int^{x}_{0}\sqrt{x-t}dt}{\sqrt{x ^{3}}}\\ &=\lim\limits_{x\to0+}\frac{- \frac{2}{3}(x-t)^{\frac{3}{2}}\Big|^{x}_{0}}{\sqrt{x ^{3}}}\\ &=\lim\limits_{x\to0+}\frac{\frac{2}{3}x^{\frac{3}{2}}}{x^{\frac{3}{2}}}\\ &=\frac{2}{3} \end{aligned}

例17:设可导函数y=y(x)y=y(x)由方程0x+yet2dt=0xxsint2dt\begin{aligned}\int^{x+y}_{0}e^{-t^{2}}dt=\int^{x}_{0}x \sin t^{2}dt\end{aligned}确定,则dydxx=0=()\begin{aligned} \frac{dy}{dx}\Big|^{}_{x=0}=()\end{aligned}

0x+yet2dt=0xxsint2dt对两边同时求导e(x+y)2(1+y)=0xsint2dt+xsinx2(1)\begin{aligned} \int^{x+y}_{0}e^{-t^{2}}dt&=\int^{x}_{0}x \sin t^{2}dt\quad 对两边同时求导\\ e^{-(x+y)^{2}}(1+y')&=\int^{x}_{0}\sin t^{2}dt+x \sin x^{2}\tag{1} \end{aligned}

显然需要x=0x=0时,yy的值,令x=0x=0,代入题中的式子

0yet2dt=0y=0\int^{y}_{0}e^{-t^{2}}dt=0 \Rightarrow y=0

被积函数大于零,积分结果为零,则积分区间长度一定为00

x=0,y=0x=0,y=0,代入(1)(1)

1+y(0)=0y(0)=1\begin{aligned} 1+y'(0)=0 \Rightarrow y'(0)=-1 \end{aligned}