【概率论】抽样分布

35 阅读1分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

抽样分布

一、三大抽样分布

1. χ2\chi^{2}分布

定义

X1,X2,,XnX_{1},X_{2},\cdots,X_{n}为来自总体N(0,1)N(0,1)的简单随机样本,则称统计量X2=X12+X22++Xn2X^{2}=X_{1}^{2}+X_{2}^{2}+\cdots +X_{n}^{2}服从于自由度为nnχ2\chi^{2}分布,记作X2χ2(n)X^{2}\sim \chi^{2}(n)

性质

  • χ2\chi^{2}分布的可加性:设Xχ2(m),Yχ2(n)X\sim \chi^{2}(m),Y\sim \chi^{2}(n),且XXYY相互独立,则X+Yχ2(m+n)X+Y\sim \chi^{2}(m+n)
  • 期望与方差:若Xχ2(n)X\sim \chi^{2}(n),则E(X)=n),D(X)=2nE(X)=n),D(X)=2n

χ2\chi^{2}分布的上分位点

对于给定的正数α(0<α<1)\alpha(0<\alpha<1),若满足P{X>χα2(n)}=αP\{X>\chi^{2}_{\alpha}(n)\}=\alpha,则称点χα2(n)\chi_{\alpha}^{2}(n)χ2(n)\chi^{2}(n)分布的上α\alpha分位点

2. FF分布

定义

Xχ2(m),Yχ2(n)X\sim \chi^{2}(m),Y\sim \chi^{2}(n),且XXYY互相独立,则称随机变量F=X/mY/nF=\frac{X/m}{Y/n}服从自由度为(m,n)(m,n)FF分布,记为FF(m,n)F\sim F(m,n)

性质

FF(m,n)F\sim F(m,n),则1FF(n,m)\frac{1}{F}\sim F(n,m)

FF分布的上分位点

对于给定的正数α(0<α<1)\alpha(0<\alpha<1),若满足P{F>Fα(m,n)}P\{F>F_{\alpha}(m,n)\},则称点Fα(m,n)F_{\alpha}(m,n)F(m,n)F(m,n)分布的上α\alpha分位点

3. tt分布

定义

XN(0,1),Yχ2(n)X\sim N(0,1),Y\sim \chi^{2}(n),且XXYY相互独立,则称随机变量t=XY/nt=\frac{X}{\sqrt{Y/n}}服从自由度为nntt分布,记作tt(n)t\sim t(n)

tt分布的上分位点

对于给定的正数α(0<α<1)\alpha(0<\alpha<1),若满足P{t>tα(n)}=αP\{t>t_{\alpha}(n)\}=\alpha,则称点tα(n)t_{\alpha}(n)t(n)t(n)分布的上α\alpha分位点

二、六大统计量

1. 单正态总体

X1,X2,,XnX_{1},X_{2},\cdots,X_{n}为来自总体N(μ,σ2)N(\mu,\sigma^{2})的样本,Xˉ\bar{X}为样本均值,S2S^{2}为样本方差

Xˉ=1ni=1nXi,S2=1n1(i=1nXi2nXˉ2)\bar{X}=\frac{1}{n}\sum\limits^{n}_{i=1}X_{i},S^{2}=\frac{1}{n-1}(\sum\limits^{n}_{i=1}X^{2}_{i}-n\bar{X}^{2}) E(Xˉ)=E(1ni=1nXi)=1nE(X1++Xn)=1n(EX1++EXn)=μ\begin{aligned}E(\bar{X})&=E(\frac{1}{n}\sum\limits^{n}_{i=1}X_{i})\\&=\frac{1}{n}E(X_{1}+\cdots+X_{n})\\&=\frac{1}{n}(EX_{1}+\cdots+EX_{n})\\&=\mu\end{aligned} D(Xˉ)=D(1ni=1nXi)=1n2D(X1++Dn)=1n2(DX1++DXn)=σ2n\begin{aligned}D(\bar{X})&=D(\frac{1}{n}\sum\limits^{n}_{i=1}X_{i})\\&=\frac{1}{n^{2}}D(X_{1}+\cdots+D_{n})\\&=\frac{1}{n^{2}}(DX_{1}+\cdots+DX_{n})\\&=\frac{\sigma^{2}}{n}\end{aligned} E(S2)=E[1n1(i=1nXi2nXˉ2)]=1n1[i=1nE(Xi2nE(Xˉ2))]=1n1{i=1n[DXi+(EXi)2]n[DXˉ+(EXˉ)2]}=1n1[n(σ2+μ2)n(σ2n+μ2)]=σ2\begin{aligned}E(S^{2})&=E[\frac{1}{n-1}(\sum\limits^{n}_{i=1}X_{i}^{2}-n\bar{X}^{2})]\\&=\frac{1}{n-1}[\sum\limits^{n}_{i=1}E(X_{i}^{2}-nE(\bar{X}^{2}))]\\&=\frac{1}{n-1}\{\sum\limits^{n}_{i=1}[DX_{i}+(EX_{i})^{2}]-n[D\bar{X}+(E\bar{X})^{2}]\}\\&=\frac{1}{n-1}[n(\sigma^{2}+\mu^{2})-n(\frac{\sigma^{2}}{n}+\mu^{2})]\\&=\sigma^{2}\end{aligned}

  1. n(Xˉμ)σN(0,1)\begin{aligned}\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\sim N(0,1)\end{aligned} XˉN(μ,σ2n)\because\bar{X}\sim N(\mu,\frac{\sigma^{2}}{n}) Xˉμσ2nN(0,1)\therefore \frac{\bar{X}-\mu}{\sqrt{\frac{\sigma^{2}}{n}}}\sim N(0,1) 得证
  2. (n1)S2σ2χ2(n1)\begin{aligned}\frac{(n-1)S^{2}}{\sigma^{2}}\sim \chi^{2}(n-1)\end{aligned},且Xˉ\bar{X}S2S^{2}相互独立
  3. XˉμS/nt(n1)\begin{aligned}\frac{\bar{X}-\mu}{S /\sqrt{n}}\sim t(n-1)\end{aligned} n(Xˉμ)σN(0,1),(n1)S2σ2χ2(n1)\because\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\sim N(0,1),\frac{(n-1)S^{2}}{\sigma^{2}}\sim \chi^{2}(n-1) n(Xˉμ)σ(n1)S2σ2/(n1)t(n1)\begin{aligned}\therefore\frac{\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}}{\sqrt{\frac{(n-1)S^{2}}{\sigma^{2}}}/(n-1)}\sim t(n-1)\end{aligned} 得证

2. 双正态总体

X1,X2,,Xn1X_{1},X_{2},\cdots,X_{n1}Y1,Y2,,Yn2Y_{1},Y_{2},\cdots,Y_{n2}分别是来自正态总体N(μ1,σ12)N(\mu_{1},\sigma_{1}^{2})N(μ2,σ22)N(\mu_{2},\sigma_{2}^{2})的样本,且这两个样本相互独立,设Xˉ=1n1i=1n1Xi,Yˉ=1n2i=1n2Yi\bar{X}=\frac{1}{n_{1}}\sum\limits^{n_{1}}_{i=1}X_{i},\bar{Y}=\frac{1}{n_{2}}\sum\limits^{n_{2}}_{i=1}Y_{i}分别是这两个样本的样本均值;S12=1n11i=1n1(XiXˉ)2,S22=1n21i=1n2(XiXˉ)2S_{1}^{2}=\frac{1}{n_{1}-1}\sum\limits^{n_{1}}_{i=1}(X_{i}-\bar{X})^{2},S_{2}^{2}=\frac{1}{n_{2}-1}\sum\limits^{n_{2}}_{i=1}(X_{i}-\bar{X})^{2}

  1. (XˉYˉ)(μ1μ2)σ12n1+σ22n2N(0,1)\begin{aligned}\frac{(\bar{X}-\bar{Y})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma^{2}_{1}}{n_{1}}+\frac{\sigma^{2}_{2}}{n_{2}}}}\sim N(0,1)\end{aligned} XˉN(μ1,σ12n1),YˉN(μ2,σ22n2)\because \bar{X}\sim N(\mu_{1},\frac{\sigma_{1}^{2}}{n_{1}}),\bar{Y}\sim N(\mu_{2},\frac{\sigma_{2}^{2}}{n_{2}}) XˉYˉN(μ1μ2,σ12n1+σ22n2)\therefore \bar{X}-\bar{Y}\sim N(\mu_{1}-\mu_{2},\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}) (XˉYˉ)(μ1μ2)σ12n1+σ22n2N(0,1)\begin{aligned}\therefore\frac{(\bar{X}-\bar{Y})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma^{2}_{1}}{n_{1}}+\frac{\sigma^{2}_{2}}{n_{2}}}}\sim N(0,1)\end{aligned} 得证
  2. S12/σ21S22/σ22F(n11,n21)\begin{aligned}\frac{S^{2}_{1}/\sigma_{2}^{1}}{S^{2}_{2}/\sigma^{2}_{2}}\sim F(n_{1}-1,n_{2}-1)\end{aligned} (n11)S12σ12χ2(n11),(n21)S22σ22χ2(n21)\begin{aligned}\because\frac{(n_{1}-1)S_{1}^{2}}{\sigma_{1}^{2}}\sim \chi^{2}(n_{1}-1),\frac{(n_{2}-1)S_{2}^{2}}{\sigma_{2}^{2}}\sim \chi^{2}(n_{2}-1)\end{aligned} (n11)S12σ12/(n11)(n21)S22σ22/(n21)F(n11,n21)\begin{aligned}\therefore\frac{\frac{(n_{1}-1)S_{1}^{2}}{\sigma_{1}^{2}}/(n_{1}-1)}{\frac{(n_{2}-1)S_{2}^{2}}{\sigma_{2}^{2}}/(n_{2}-1)}\sim F(n_{1}-1,n_{2}-1)\end{aligned}

得证 6. 若σ12=σ22=σ2\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2},则(XˉYˉ)(mu1μ2)Sw1n1+1n2t(n1+n22)\begin{aligned}\frac{(\bar{X}-\bar{Y})-(mu_{1}-\mu_{2})}{S_{w}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\sim t(n_{1}+n_{2}-2)\end{aligned},其中Sw=(n11)S12+(n21)S22n1+n22\begin{aligned}S_{w}=\sqrt{\frac{(n_{1}-1)S_{1}^{2}+(n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}}\end{aligned} (n11)S12σ12+(n21)S22σ22=(n11)S12+(n21)S22σ2χ2(n1+n22)\begin{aligned}\because\frac{(n_{1}-1)S_{1}^{2}}{\sigma_{1}^{2}}+\frac{(n_{2}-1)S_{2}^{2}}{\sigma_{2}^{2}}=\frac{(n_{1}-1)S_{1}^{2}+(n_{2}-1)S_{2}^{2}}{\sigma^{2}}\sim \chi^{2}(n_{1}+n_{2}-2)\end{aligned}(XˉYˉ)(μ1μ2)σ12n1+σ22n2/(n11)S12+(n21)S22σ2/(n1+n22)t(n1+n22)\begin{aligned}\frac{(\bar{X}-\bar{Y})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma^{2}_{1}}{n_{1}}+\frac{\sigma^{2}_{2}}{n_{2}}}}\Big/\sqrt{\frac{(n_{1}-1)S_{1}^{2}+(n_{2}-1)S_{2}^{2}}{\sigma^{2}}\Big/(n_{1}+n_{2}-2)}\sim t(n_{1}+n_{2}-2)\end{aligned} 得证