【高等数学】多元函数微分法及其应用

110 阅读10分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

多元函数的基本概念

一、多元函数的极限

1. 二元函数的定义

DD是平面上的一个点集,若对每个点P(x,y)DP(x,y)\in D,变量zz按照某一对应法则f有一个确定的值与之对应,则称zzx,yx,y的二元函数,记为z=f(x,y)z=f(x,y),其中点集DD称为该函数的定义域,x,yx,y称为自变量,zz称为因变量,函数f(x,y)f(x,y)的全体所构成的集合称为函数ff的值域,记为f(D)f(D)

通常情况下,二元函数z=f(x,y)z=f(x,y)在几何上表示一张空间曲面

 

2. 二元函数的极限

设函数f(x,y)f(x,y)在区域DD上有定义,点P0(x0,y0)DP_0(x_0,y_0)\in D或为DD的边界点,如果ξ>0\forall \xi>0,存在ξ>0\xi>0,当P(x,y)DP(x,y)\in D,且0<(xx0)2+(yy0)2<ξ0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\xi时,都有f(x,y)A<ξ|f(x,y)-A|<\xi成立,则称常数AA为函数f(x,y)f(x,y)(x,y)(x0,y0)(x,y)\to(x_0,y_0)时的极限,记为lim(x,y)(x0,y0)f(x,y)=A\lim_{(x,y)\to(x_0,y_0)}f(x,y)=Alimxx0yy0f(x,y)=A\lim_{\substack{x\to x_0\\y\to y_0}}f(x,y)=AlimPP0f(P)=A\lim_{P\to P_0}f(P)=A

 

例1:求lim(x,y)(0,2)sinxyx\lim_{(x,y)\to(0,2)}\frac{\sin xy}x

法1(凑sinaa\frac{\sin a}a):

原式=lim(x,y)(0,2)sinxyxyxyx=1lim(x,y)(0,2)y=2=\lim_{(x,y)\to(0,2)}\frac{\sin xy}{xy}\cdot\frac{xy}x=1\cdot\lim_{(x,y)\to(0,2)}y=2

法2(等价无穷小):

原式=lim(x,y)(0,2)xyx=2=\lim_{(x,y)\to(0,2)}\frac{xy}x=2

 

二、多元函数的连续性

1. 二元函数连续性的概念

设二元函数f(P)=f(x,y)f(P)=f(x,y)的定义域为DDP0(x0,y0)P_0(x_0,y_0)DD上的点,如果lim(x,y)(x0,y0)f(x,y)=f(x0,y0)\lim_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0),那么称函数f(x,y)f(x,y)在点P0(x0,y0)P_0(x_0,y_0)连续

 

2. 多元连续函数的性质

  • 多元连续函数经过四则运算法则仍为连续函数

  • 多元连续函数的复合函数仍为连续函数

  • 有界性与最大最小值定理:在有界闭区域DD上的多元连续函数,必定在DD上有界,且在DD上能取得它的最大值与最小值

  • 在有界闭区域DD上的多元连续函数,必能取得介于最大值与最小值之间的任何值

 

偏导数

一、偏导数的定义及计算方法

1. 偏导数的定义

设函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_0,y_0)的某一邻域内有定义,当yy固定在y0y_0,而xxx0x_0处有增量Δx\Delta x时,相应的函数有增量f(x0+Δx,y0)f(x0,y0)f(x_0+\Delta x,y_0)-f(x_0,y_0),如果limΔx0f(x0+Δx,y0)f(x0,y0)Δx\lim_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}存在,那么称此极限为函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_0,y_0)处对xx的偏导数,记作zxx=x0y=y0\frac{\partial z}{\partial x}\Big|_{\substack{x=x_0\\y=y_0}}fxx=x0y=y0\frac{\partial f}{\partial x}\Big|_{\substack{x=x_0\\y=y_0}}zxx=x0y=y0z_x\Big|_{\substack{x=x_0\\y=y_0}}fx(x0,y0)f_x(x_0,y_0)

 

2. 偏导函数的定义

如果函数z=f(x,y)z=f(x,y)在区域DD内每一点(x,y)(x,y)处对xx的偏导都存在,那么这个偏导数就是x,yx,y的函数,它就称为函数z=f(x,y)z=f(x,y)对自变量xx的偏导函数,记作zx\frac{\partial z}{\partial x}fx\frac{\partial f}{\partial x}zxz_xfx(x,y)f_x(x,y),类似的,可以定义函数z=f(x,y)z=f(x,y)对自变量yy的偏导函数,记作zy\frac{\partial z}{\partial y}fy\frac{\partial f}{\partial y}zyz_yfy(x,y)f_y(x,y)

 

例1:求z=x2+3xy+y2z=x^2+3xy+y^2在点(1,2)(1,2)处的偏导数

zx=2x+3y\frac{\partial z}{\partial x}=2x+3y

zy=3x+2y\frac{\partial z}{\partial y}=3x+2y

代入x=1,y=2x=1,y=2

zxx=1y=2=8\frac{\partial z}{\partial x}\Big|_{\substack{x=1\\y=2}}=8

zyx=1y=2=7\frac{\partial z}{\partial y}\Big|_{\substack{x=1\\y=2}}=7

 

二、高阶偏导数

1. 高阶偏导数的定义

设函数z=f(x,y)z=f(x,y)在区域DD内具有偏导数zx=fx(x,y)\frac{\partial z}{\partial x}=f_x(x,y)zy=fy(x,y)\frac{\partial z}{\partial y}=f_y(x,y),于是在DDfx(x,y)f_x(x,y)fy(x,y)f_y(x,y)都是x,yx,y的函数,如果这两个函数的偏导数也存在,那么称它们是函数z=f(x,y)z=f(x,y)的二阶偏导数,按照对变量求导次序的不同于下列四个二阶偏导数

zx(zx)=2zx2=fxx(x,y)\begin{aligned}\frac{\partial z}{\partial x}(\frac{\partial z}{\partial x})=\frac{\partial^2z}{\partial x^2}=f_{xx}(x,y)\end{aligned}

zy(zx)=2zxy=fxy(x,y)\begin{aligned}\frac{\partial z}{\partial y}(\frac{\partial z}{\partial x})=\frac{\partial^2z}{\partial x\partial y}=f_{xy}(x,y)\end{aligned}

zx(zy)=2zyx=fyx(x,y)\begin{aligned}\frac{\partial z}{\partial x}(\frac{\partial z}{\partial y})=\frac{\partial^2z}{\partial y\partial x}=f_{yx}(x,y)\end{aligned}

zy(zy)=2zy2=fyy(x,y)\begin{aligned}\frac{\partial z}{\partial y}(\frac{\partial z}{\partial y})=\frac{\partial^2z}{\partial y^2}=f_{yy}(x,y)\end{aligned}

其中第二、三这两个偏导数称为混合偏导数,同样可得三阶、四阶……以及nn阶偏导数,二阶及二阶以上的偏导数统称为高阶偏导数

 

例2:证明函数u=1ru=\frac1r满足方程ux2+uy2+uz2=0\frac{\partial^u}{\partial x^2}+\frac{\partial^u}{\partial y^2}+\frac{\partial^u}{\partial z^2}=0其中r=x2+y2+z2r=\sqrt{x^2+y^2+z^2}

ux=urrx=1r22x2x2+y2+z2=x1r3\begin{aligned}\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r}\frac{\partial r}{\partial x}=-\frac1{r^2}\frac{2x}{2\sqrt{x^2+y^2+z^2}}=-x\frac1{r^3}\end{aligned}

ux2=[1r3+x(3)r4rx]=1r3+3x2r5\begin{aligned}\frac{\partial^u}{\partial x^2}=-[\frac1{r^3}+x\cdot(-3)r^{-4}\cdot\frac{\partial r}{\partial x}]=-\frac1{r^3}+3\frac{x^2}{r^5}\end{aligned}

由变量对称性得

uy2=1r3+3y2r5\begin{aligned}\frac{\partial^u}{\partial y^2}=-\frac1{r^3}+3\frac{y^2}{r^5}\end{aligned}

uz2=1r3+3z2r5\begin{aligned}\frac{\partial^u}{\partial z^2}=-\frac1{r^3}+3\frac{z^2}{r^5}\end{aligned}

ux2+uy2+uz2=3r3+3x2+y2+z2r5=0\begin{aligned}\frac{\partial^u}{\partial x^2}+\frac{\partial^u}{\partial y^2}+\frac{\partial^u}{\partial z^2}=-\frac3{r^3}+3\frac{x^2+y^2+z^2}{r^5}=0\end{aligned}

证毕

 

全微分

一、全微分的定义

设函数z=f(x,y)z=f(x,y)在点(x,y)(x,y)的某邻域内有定义,如果函数在点(x,y)(x,y)的全增量Δz=f(x+Δx,y+Δy)f(x,y)\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)可以表示为Δz=AΔx+BΔy+o(ρ)\Delta z=A\Delta x+B\Delta y+o(\rho),其中AABB是不依赖于Δx\Delta xΔy\Delta y而仅与xxyy有关(A=zx,B=zyA=\frac{\partial z}{\partial x},B=\frac{\partial z}{\partial y}),ρ=(Δx)2+(Δy)2\rho=\sqrt{(\Delta x)^2+(\Delta y)^2},那么称函数z=f(x,y)z=f(x,y)在点(x,y)(x,y)可微分,而AΔx+BΔyA\Delta x+B\Delta y称为函数z=f(x,y)z=f(x,y)在点(x,y)(x,y)的全微分,记作dzdz,即dz=AΔx+BΔydz=A\Delta x+B\Delta y

 

二、全微分存在的必要条件

如果函数z=f(x,y)z=f(x,y)在点(x,y)(x,y)可微分,那么该函数在点(x,y)(x,y)的偏导数zx\frac{\partial z}{\partial x}zy\frac{\partial z}{\partial y}必定存在,且函数z=f(x,y)z=f(x,y)在点(x,y)(x,y)的全微分为dz=zxΔx+zyΔydz=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y

 

证明:

z=f(x,y)\because z=f(x,y)(x,y)(x,y)处可微分

Δz=AΔx+BΔy+o(ρ)\Delta z=A\Delta x+B\Delta y+o(\rho)成立

Δy=0\Delta y=0时,ρ=(Δx)2+(Δy)2=Δx\rho=\sqrt{(\Delta x)^2+(\Delta y)^2}=|\Delta x|

f(x+Δx,y)f(x,y)=AΔx+o(Δx)f(x+\Delta x,y)-f(x,y)=A\Delta x+o(|\Delta x|)

两边同除Δx\Delta x, 得

limΔx0f(x+Δx,y)f(x,y)Δx=A+limΔx0o(Δx)Δx=A\lim_{\Delta x\to0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}=A+\lim_{\Delta x\to0}\frac{o(|\Delta x|)}{\Delta x}=A

zx=A\frac{\partial z}{\partial x}=A

同理令Δx=0\Delta x=0

zy=B\frac{\partial z}{\partial y}=B

 

区别:一元函数在某点的导数存在是微分存在的充分必要条件,但对于多元函数而言,歌偏导数存在是全微分存在的必要条件而不是充分条件

一元函数

在这里插入图片描述

 

二元函数

在这里插入图片描述  

二元函数的图形往往是个曲面,对应的定义域是个二维平面。偏导数只是曲面上沿着x轴或者y轴方向的变化率,而微分必须是曲面上某一个很小的“小平面代曲面”

这里就有了问题,存在偏导数,说明沿着x轴方向和y轴方向可以带,但是斜着的方向不一定,斜方向可能一下就是个无穷大无穷小,这样就不能小平面近似了

作者:xynnn 

链接:www.zhihu.com/question/48… 

 

x\partial xdxdx其实是同一个东西,可以约掉变成dz=z+zdz=\partial z+\partial z。但是这明显不对,两个∂z其实是有区别的,第一个是沿着xx方向zz的变化,一个是沿着yy方向zz的变化,不妨区分一下写成dz=xz+yzdz=\partial_xz+\partial_yz。   这告诉我们由于x,yx,y的变化,造成的zz的变化可以分解成两个部分相加,由xx变化造成的xz\partial_xz,由yy变化造成的yz\partial_yz。就像在矢量分解一样。设长方形OBPAOBPAOP=dr=(dx,dy)OP=dr=(dx,dy)。如果记PP点与OOzz值的差为z(OP)z(OP)那么,z(OP)=z(OA)+z(OB)z(OP)=z(OA)+z(OB)

作者:unidentified2015

链接:www.bilibili.com/read/cv1249…

 

 

例1:证明f(x,y)={xyx2+y2,x2+y200,x2+y2=0f(x,y)=\begin{cases}\frac{xy}{\sqrt{x^2+y^2}},x^2+y^2\ne0\\0,x^2+y^2=0\end{cases}(0,0)(0,0)处偏导数存在但不可微

fx(0,0)=limx0f(x,0)f(0,0)x0=limx000x0=0f'_x(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}{x-0}=\lim_{x\to0}\frac{0-0}{x-0}=0

fx(0,0)=0f'_x(0,0)=0存在

由变量对称性得,fy(0,0)=0f'_y(0,0)=0存在

limΔx0Δy0(Δzfx(0,0)Δxfy(0,0)Δy)=limΔx0Δy0ΔxΔy(Δx)2+(Δy)2\begin{aligned}\lim_{\substack{\Delta x\to0\\\Delta y\to0}}(\Delta z-f'_x(0,0)\Delta x-f'_y(0,0)\Delta y)=\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\frac{\Delta x\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\end{aligned}

limΔx0Δy0=ΔxΔy(Δx)2+(Δy)2ρ=limΔx0Δy0ΔxΔy(Δx)2+(Δy)2=Δy=kΔxlimΔx0Δy=kΔx0k(Δx)2(Δx)2+k2(Δx)2≢0\begin{aligned}\lim_{\substack{\Delta x\to0\\\Delta y\to0}}&=\frac{\frac{\Delta x\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}}\rho\\&=\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\frac{\Delta x\Delta y}{(\Delta x)^2+(\Delta y)^2}\\&\overset{\text{令}\Delta y=k\Delta x}{=}\lim_{\substack{\Delta x\to0\\\Delta y=k\Delta x\to0}}\frac{k(\Delta x)^2}{(\Delta x)^2+k^2(\Delta x)^2}\not\equiv 0\end{aligned}

 

三、全微分存在的充分条件

如果函数z=f(x,y)z=f(x,y)的偏导数zx,zx\frac{\partial z}{\partial x},\frac{\partial z}{\partial x}在点(x,y)(x,y)连续,那么函数在该点可微分

 

证明:

Δz=f(x+Δx,y+Δy)f(x,y)=[f(x+Δx,y+Δy)f(x,y+Δy)]+[f(x,y+Δy)f(x,y)]\begin{aligned}\Delta z&=f(x+\Delta x,y+\Delta y)-f(x,y)\\&=[f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)]+[f(x,y+\Delta y)-f(x,y)]\end{aligned}

[f(x+Δx,y+Δy)f(x,y+Δy)]=拉格朗日中值定理fx(x+θ1Δx,y+Δy)fx(x,y)+ξ1Δx(0<θ1<1)[f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)]\overset{\text{拉格朗日中值定理}}{=}\underbrace{f'_x(x+\theta_1\Delta x,y+\Delta y)}_{f'_x(x,y)+\xi_1}\Delta x\quad(0<\theta_1<1)

此处用到了拉格朗日中值定理带有θ\theta的形式即

f(b)f(a)=f(ξ)(ba)=f[a+θ(ba)](ba)(0<θ<1)f(b)-f(a)=f'(\xi)(b-a)=f'[a+\theta(b-a)](b-a)\quad(0<\theta<1)

 

fx(x,y)f'_x(x,y)在点(x,y)(x,y)连续

f(x+Δx,y+Δy)f(x,y+Δy)=fx(x,y)Δx+ξ1Δx(limΔx0Δy0ξ1=0)f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)=f'_x(x,y)\Delta x+\xi_1\Delta x\quad(\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\xi_1=0)

同理得

f(x,y+Δy)f(x,y)=fy(x,y)Δy+ξ2Δy(limΔx0Δy0ξ2=0)f(x,y+\Delta y)-f(x,y)=f'_y(x,y)\Delta y+\xi_2\Delta y\quad(\lim_{\substack{\Delta x\to0\\\Delta y\to0}}\xi_2=0)

Δz=fx(x,y)Δx+fy(x,y)Δy+ξ1Δx+ξ2Δy\Delta z=f'_x(x,y)\Delta x+f'_y(x,y)\Delta y+\xi_1\Delta x+\xi_2\Delta y

Δx0,Δy0\Delta x\to0,\Delta y\to0

0ξ,Δx+ξ2Δyρξ1Δxρ+ξ2Δyρ0\leq\Big|\frac{\xi_,\Delta x+\xi_2\Delta y}\rho\Big|\leq|\xi_1\frac{\Delta x}\rho|+|\xi_2\frac{\Delta y}\rho|

对于Δxρ=Δx(Δx)2+(Δy)21\frac{\Delta x}\rho=\frac{\Delta x}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\leq1

因此

ξ1Δxρ+ξ2Δyρξ1+ξ20|\xi_1\frac{\Delta x}\rho|+|\xi_2\frac{\Delta y}\rho|\leq|\xi_1|+|\xi_2|\to0

ξ1Δx+ξ2Δy=o(ρ)\xi_1\Delta x+\xi_2\Delta y=o(\rho)

故可微分

 

例2:计算函数u=x+siny2+eyzu=x+\sin\frac y2+e^{yz}的全微分

ux=1\frac{\partial u}{\partial x}=1

uy=12cosy2+zeyz\frac{\partial u}{\partial y}=\frac12\cos \frac y2+ze^{yz}

uz=yeyz\frac{\partial u}{\partial z}=ye^{yz}

故全微分du=dx+(12cosy2+zeyz)dy+yeyzdzdu=dx+(\frac12\cos \frac y2+ze^{yz})dy+ye^{yz}dz

 

多元复合函数求导法则

一、一元函数与多元函数复合

如果函数u=u(t)u=u(t)v=v(t)v=v(t)都在点tt可导,函数z=f(u,v)z=f(u,v)在对应点(u,v)(u,v)具有连续偏导数,那么复合函数z=f[u(t),v(t)]z=f[u(t),v(t)]在点tt可导,且有dzdt=zududt+zvdvdt\begin{aligned}\frac{dz}{dt}=\frac{\partial z}{\partial u}\frac{du}{dt}+\frac{\partial z}{\partial v}\frac{dv}{dt}\end{aligned}

 

建议画图,方便理解z{utvtz\begin{cases}u\to t\\v\to t\end{cases}

 

二、多元函数与多元函数复合

如果函数u=u(x,y)u=u(x,y)v=v(x,y)v=v(x,y)都在点(x,y)(x,y)具有对xx及对yy的偏导数,函数z=f(u,v)z=f(u,v)在对应点(u,v)(u,v)具有连续偏导数,那么复合函数z=f[u(x,y),v(x,y)]z=f[u(x,y),v(x,y)]在点(x,y)(x,y)的两个偏导数都存在,且有dzdx=zuux+zvvx,dzdy=zuuy+zvvy\begin{aligned}\frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x},\frac{dz}{dy}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y}\end{aligned}

 

建议画图,方便理解z{u{xyv{xyz\begin{cases}u\begin{cases}x\\y\end{cases}\\v\begin{cases}x\\y\end{cases}\end{cases}

 

例1:设u=f(x,y,z)=ex2+y2+z2u=f(x,y,z)=e^{x^2+y^2+z^2},而z=x2sinyz=x^2\sin y,求ux\frac{\partial u}{\partial x}uy\frac{\partial u}{\partial y}

u=f{xyz{xyu=f\begin{cases}x\\y\\z\begin{cases}x\\y\end{cases}\end{cases}

ux=fx+fzzx=ex2+y2+z22x+ex2+y2+z22z2xsiny=2xex2+y2+z2(1+2x2sin2y)\begin{aligned}\frac{\partial u}{\partial x}&=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial z}\frac{\partial z}{\partial x}\\&=e^{x^2+y^2+z^2}\cdot2x+e^{x^2+y^2+z^2}\cdot2z\cdot2x\sin y\\&=2xe^{x^2+y^2+z^2}(1+2x^2\sin^2y)\end{aligned}

同理不再展示计算过程

uy=2ex2+y2+x4sin2y(y+x4sinycosy)\begin{aligned}\frac{\partial u}{\partial y}=2e^{x^2+y^2+x^4\sin^2y}(y+x^4\sin y\cos y)\end{aligned}

 

例2:设w=f(x+y+z,xyz)w=f(x+y+z,xyz)ff具有二阶连续偏导数,求wx2wxz\frac{\partial w}{\partial x}和\frac{\partial^2w}{\partial x\partial z}

u=x+y+z,v=xyzu=x+y+z,v=xyz

f{u{xyzv{xyzf\begin{cases}u\begin{cases}x\\y\\z\end{cases}\\v\begin{cases}x\\y\\z\end{cases}\end{cases}

wx=fuux+fvvx=fu+yzfv\begin{aligned}\frac{\partial w}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}=\frac{\partial f}{\partial u}+yz\frac{\partial f}{\partial v}\end{aligned}

wx{u{xyzv{xyz\begin{aligned}\frac{\partial w}{\partial x}\end{aligned}\begin{cases}u\begin{cases}x\\y\\z\end{cases}\\v\begin{cases}x\\y\\z\end{cases}\end{cases}

原函数的偏导数也是关于u,vu,v的函数

2wxz=2fu2uz+2fuvvz+yfv+yz(2fvuuz+2fv2vz)=2fu2+xy2fuv+yfv+yz(2fvu+xy2fv2)注意因为混合导数求导顺序不同,结果相同,所以2fxz,2fzx要合并起来=yfv+2fu2+xy2z2fv2+(xy+yz)2fuv\begin{aligned}\frac{\partial^2w}{\partial x\partial z}&=\frac{\partial^2f}{\partial u^2}\frac{\partial u}{\partial z}+\frac{\partial^2f}{\partial u\partial v}\frac{\partial v}{\partial z}+y\frac{\partial f}{\partial v}+yz(\frac{\partial^2f}{\partial v\partial u}\frac{\partial u}{\partial z}+\frac{\partial^2f}{\partial v^2}\frac{\partial v}{\partial z})\\&=\frac{\partial^2f}{\partial u^2}+xy\frac{\partial^2f}{\partial u\partial v}+y\frac{\partial f}{\partial v}+yz(\frac{\partial^2f}{\partial v\partial u}+xy\frac{\partial^2f}{\partial v^2})\\&\text{注意因为混合导数求导顺序不同,结果相同,所以}\frac{\partial^2f}{\partial x\partial z},\frac{\partial^2f}{\partial z\partial x}\text{要合并起来}\\&=y\frac{\partial f}{\partial v}+\frac{\partial^2f}{\partial u^2}+xy^2z\frac{\partial^2f}{\partial v^2}+(xy+yz)\frac{\partial^2f}{\partial u\partial v}\end{aligned}

也可以用f1f'_1表示fu\frac{\partial f}{\partial u},用f2f'_2表示fv\frac{\partial f}{\partial v}

过程相同,结果为f11+(xy+yz)f12+yf2+xy2zf22f''_{11}+(xy+yz)f''_{12}+yf'_2+xy^2zf''_{22}

 

隐函数求导公式

隐函数存在定理1:设函数F(x,y)F(x,y)在点P(x0,y0)P(x_0,y_0)的某一邻域内具有连续偏导数,且F(x0,y0)=0,Fy(x0,y0)0F(x_0,y_0)=0,F'_y(x_0,y_0)\ne0,则方程F(x,y)=0F(x,y)=0在点(x0,y0)(x_0,y_0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y=f(x)y=f(x),它满足条件y0=f(x0)y_0=f(x_0),并有dydx=FxFy\frac{dy}{dx}=-\frac{F_x'}{F_y'}。该公式即为隐函数求导公式

 

例1:验证方程x2+y21=0x^2+y^2-1=0在点(0,1)(0,1)的某一邻域内唯一确定一个有连续导数,当x=0,y=1x=0,y=1时的隐函数y=f(x)y=f(x),并求着函数的一阶及二阶导数在x=0x=0的值

dydx=FxFy=xy\frac{dy}{dx}=-\frac{F'_x}{F'_y}=-\frac xy

dydxx=0=0\frac{dy}{dx}\Big|_{x=0}=0

d2ydx2=yxdydxy2=y2+x2x2=1y3\frac{d^2y}{dx^2}=-\frac{y-x\frac{dy}{dx}}{y^2}=-\frac{y^2+x^2}{x^2}=-\frac1{y^3}

d2ydx2x=0=1\frac{d^2y}{dx^2}\Big|_{x=0}=-1

 

隐函数存在定理2:设函数F(x,y,z)F(x,y,z)在点P(x0,y0,z0)P(x_0,y_0,z_0)的某一邻域内具有连续偏导数,且F(x0,y0,z0)=0,Fz(x0,y0,z0)0F(x_0,y_0,z_0)=0,F'_z(x_0,y_0,z_0)\ne0,则方程F(x,y,z)=0在点(x0,y0,z0)F(x,y,z)=0在点(x_0,y_0,z_0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z=f(x,y)z=f(x,y),它满足条件z0=f(x0,y0)z_0=f(x_0,y_0),并有zx=FxFz,zy=FyFz\frac{\partial z}{\partial x}=-\frac{F'_x}{F'_z},\frac{\partial z}{\partial y}=-\frac{F'_y}{F'_z}

 

多元函数微分学的几何应用

一、空间曲线的切线与法平面

设空间曲线Γ\Gamma的参数方程为{x=x(t)y=y(t)z=z(t)t[α,β]\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}\quad t\in[\alpha,\beta],且x(t),y(t),z(t)x(t),y(t),z(t)[α,β][\alpha,\beta]上均可导,且导数不同时为00,则曲线Γ\Gamma在点M(x0,y0,z0)M(x_0,y_0,z_0)处的切线方程为xx0x(t0)=yy0y(t0)=zz0z(t0)\begin{aligned}\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}\end{aligned},法平面方程为x(t0)(xx0)+y(t0)(yy0)+z(t0)(zz0)=0x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0,其中(x(t0),y(t0),z(t0))(x'(t_0),y'(t_0),z'(t_0))为曲线Γ\Gamma在点M(x0,y0,z0)M(x_0,y_0,z_0)处的一个切向量

 

例1:曲线x=t,y=t^2,z=t^3在点(1,1,1)处的切线及法平面方程

x'(t)=1,y'(t)=2y,z'(t)=3t^2

则切向量,s=(1,2,3)\boldsymbol s=(1,2,3)

切线方程为,x11=y12=z13\begin{aligned}\frac{x-1}1=\frac{y-1}2=\frac{z-1}3\end{aligned}

法平面方程为,1(x1)+2(y1)+3(z1)=01\cdot(x-1)+2(y-1)+3(z-1)=0,即x+2y+3z6=0x+2y+3z-6=0

 

二、曲面的切平面与法线

  • 设曲面Σ\SigmaF(x,y,z)=0F(x,y,z)=0M(x0,y0,z0)M(x_0,y_0,z_0)为曲面Σ\Sigma上的一点,且在M(x0,y0,z0)M(x_0,y_0,z_0)处的偏导数连续且不同时为00,则曲面Σ\Sigma在点M(x0,y0,z0)M(x_0,y_0,z_0)处的切平面方程为Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0F'_x(x_0,y_0,z_0)(x-x_0)+F'_y(x_0,y_0,z_0)(y-y_0)+F'_z(x_0,y_0,z_0)(z-z_0)=0,法线方程xx0Fx(x0,y0,z0)=yy0Fy(x0,y0,z0)=zz0Fz(x0,y0,z0)\begin{aligned}\frac{x-x_0}{F'_x(x_0,y_0,z_0)}=\frac{y-y_0}{F'_y(x_0,y_0,z_0)}=\frac{z-z_0}{F'_z(x_0,y_0,z_0)}\end{aligned},其中n=(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))\boldsymbol n=(F'_x(x_0,y_0,z_0),F'_y(x_0,y_0,z_0),F'_z(x_0,y_0,z_0))为曲面Σ\Sigma在点M(x0,y0,z0)M(x_0,y_0,z_0)处的一个法向量

  • 如果曲面方程为z=z(x,y)z=z(x,y),则其法向量为n=(zx,zy,1)\boldsymbol n=(-z'_x,-z'_y,1)。切平面方程:zx(xx0)zy(yy0)+1(zz0)=0-z'_x(x-x_0)-z'_y(y-y_0)+1\cdot(z-z_0)=0。法线:xx0zx=yy0zy=zz01\begin{aligned}\frac{x-x_0}{-\frac{\partial z}{\partial x}}=\frac{y-y_0}{-\frac{\partial z}{\partial y}}=\frac{z-z_0}1\end{aligned}

      可以用该方法的,移项以后也可以用前面的方法

 

例2:求旋转抛物面z=x2+y21z=x^2+y^2-1在点(2,1,4)(2,1,4)处的切平面及法线方程

n=(zx,zy,1)=(2x,2y,1)=(4,2,1)\boldsymbol n=(-z_x',-z_y',1)=(-2x,-2y,1)=(-4,-2,1)

故且平面方程为(4)(x2)+(2)(y1)+1(z4)=0(-4)(x-2)+(-2)(y-1)+1\cdot(z-4)=0,即4x+2yz6=04x+2y-z-6=0

法线方程为x24=y12=z41\begin{aligned}\frac{x-2}{-4}=\frac{y-1}{-2}=\frac{z-4}1\end{aligned}

方向导数与梯度

一、方向导数

方向导数的定义

如果函数f(x,y)f(x,y)在点P0(x0,y0)P_0(x_0,y_0)处可微分,那么函数在该点沿任一方向ll的方向导数存在,为fl(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ\frac{\partial f}{\partial l}\Big|_{(x_0,y_0)}=f'_x(x_0,y_0)\cos\alpha+f'_y(x_0,y_0)\cos\beta,其中cosαcosβ\cos\alpha和\cos\beta是方向ll的方向余弦

 

例1:求函数z=x2+y2z=x^2+y^2在点(1,2)(1,2)处沿从点(1,2)(1,2)到点(2+23)(2+2\sqrt3)的方向的方向导数

l=(1,3)\boldsymbol l=(1,\sqrt3)

则与l\boldsymbol l同向的单位向量e1=(12,32)\boldsymbol {e_1}=(\frac12,\frac{\sqrt3}2)

zx(1,2)=2x(1,2)=2\frac{\partial z}{\partial x}\Big|_{(1,2)}=2x\Big|_{(1,2)}=2

zy(1,2)=2y(1,2)=4\frac{\partial z}{\partial y}\Big|_{(1,2)}=2y\Big|_{(1,2)}=4

zl(1,2)=2×12+4×32=1+23\frac{\partial z}{\partial l}\Big|_{(1,2)}=2\times\frac12+4\times\frac{\sqrt3}2=1+2\sqrt3

 

二、梯度

梯度的定义

设函数f(x,y)f(x,y)在平面区域DD内具有一阶连续偏导数,则对于每一点P0(x0,y0)DP_0(x_0,y_0)\in D,都可定出一个向量fx(x0,y0)i+fy(x0,y0)jf'_x(x_0,y_0)\boldsymbol i+f'_y(x_0,y_0)\boldsymbol j,称为函数f(x,y)f(x,y)在点P0(x0,y0)P_0(x_0,y_0)的梯度,记作gradf(x0,y0)\boldsymbol{grad}f(x_0,y_0),即gradf(x0,y0)=fx(x0,y0)i+fy(x0,y0)j\boldsymbol{grad}f(x_0,y_0)=f'_x(x_0,y_0)\boldsymbol i+f'_y(x_0,y_0)\boldsymbol j

 

例2:求grad1x2+y2\boldsymbol{grad}\frac1{x^2+y^2}

f(x,y)=1x2+y2f(x,y)=\frac1{x^2+y^2}

fx=2x(x2+y2)2\frac{\partial f}{\partial x}=-\frac{2x}{(x^2+y^2)^2}

fy=2y(x2+y2)2\frac{\partial f}{\partial y}=-\frac{2y}{(x^2+y^2)^2}

grad1x2+y2=2x(x2+y2)2i2y(x2+y2)2j\boldsymbol{grad}\frac1{x^2+y^2}=-\frac{2x}{(x^2+y^2)^2}\boldsymbol i-\frac{2y}{(x^2+y^2)^2}\boldsymbol j

 

多元函数极值及其求法

一、多元函数的极值

1. 多元函数极值的定义

设函数z=f(x,y)z=f(x,y)的定义域为DDP0(x0,y0)P_0(x_0,y_0)DD内的点,若存在P0P_0的某个邻域U(P0)DU(P_0)\subset D,使得对于该邻域内异于P0P_0的任何点(x,y)(x,y),都有f(x,y)<f(x0,y0)f(x,y)<f(x_0,y_0),则称函数f(x,y)f(x,y)在点(x0,y0)(x_0,y_0)处有极大值f(x0,y0)f(x_0,y_0),点(x0,y0)(x_0,y_0)称为函数f(x,y)f(x,y)的极大值点;若对于该邻域内异于P0P_0的任何点(x,y)(x,y),都有f(x,y)>f(x0,y0)f(x,y)>f(x_0,y_0),则称函数f(x,y)f(x,y)在点(x0,y0)(x_0,y_0)处有极小值f(x0,y0)f(x_0,y_0),点(x0,y0)(x_0,y_0)称为函数f(x,y)f(x,y)的极小值点

 

2. 多元函数极值的必要条件

设函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_0,y_0)处具有偏导数,且在点(x0,y0)(x_0,y_0)处有极值,则有fx(x0,y0)=0,fy(x0,y0)=0f'_x(x_0,y_0)=0,f'_y(x_0,y_0)=0

 

3. 多元函数极值的充分条件(判别方法)

设函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_0,y_0)的某邻域内连续且有一阶及二阶连续偏导数,且fx(x0,y0)=0,fy(x0,y0)=0f'_x(x_0,y_0)=0,f'_y(x_0,y_0)=0,令A=fxx(x0,y0),B=fxy(x0,y0),C=fyy(x0,y0)A=f''_{xx}(x_0,y_0),B=f''_{xy}(x_0,y_0),C=f''_{yy}(x_0,y_0),则f(x,y)f(x,y)在点(x0,y0)(x_0,y_0)处是否取得极值的条件如下:

  • ACB2>0AC-B^2>0时具有极值,且当A<0A<0时有极大值,当A>0A>0时有极小值

  • ACB2<0AC-B^2<0时没有极值

  • ACB2=0AC-B^2=0时,无法判断,需要用定义判断

 

例1:求函数f(x,y)=x3y3+3x2+3y29xf(x,y)=x^3-y^3+3x^2+3y^2-9x的极值

{fx=3x2+6x9=0fx=3y2+6y=0\begin{cases}\frac{\partial f}{\partial x}=3x^2+6x-9=0\\\frac{\partial f}{\partial x}=-3y^2+6y=0\end{cases}\quad解得(1,0),(1,2),(3,0),(3,2)(1,0),(1,2),(-3,0),(-3,2)

2fx2=6x+62fxy=02fy2=6y+6\begin{aligned}&\frac{\partial^2f}{\partial x^2}=6x+6\\&\frac{\partial^2f}{\partial x\partial y}=0\\&\frac{\partial^2f}{\partial y^2}=-6y+6\end{aligned}

当在点(1,0)(1,0)时,A=12,B=0,C=6A=12,B=0,C=6

ACB2>0AC-B^2>0

A=12>0\because A=12>0,故为极小值,为f(1,0)=5f(1,0)=-5

当在点(1,2)(1,2)时,A=12,B=0,C=6A=12,B=0,C=-6

ACB2<0AC-B^2<0,不是极值

当在点(1,2)(1,2)时,A=12,B=0,C=6A=-12,B=0,C=6

ACB2<0AC-B^2<0,不是极值

当在点(3,2)(-3,2)时,A=12,B=0,C=6A=-12,B=0,C=-6

ACB2>0AC-B^2>0

A=12<0\because A=-12<0,故为极大值,为f(3,2)=31f(-3,2)=31

 

二、条件极值

拉格朗日数乘法

步骤:

  1. 先做拉格朗日函数L(x,y,λ)=f(x,y)+λϕ(x,y)L(x,y,\lambda)=f(x,y)+\lambda\phi(x,y)\quad(其中λ\lambda为参数)。一般会出现,求f(x,y)f(x,y)ϕ(x,y)=0\phi(x,y)=0的条件下的极值/最值

  2. {Lx(x,y,λ)=0Ly(x,y,λ)=0Lλ(x,y,λ)=0\begin{cases}L'_x(x,y,\lambda)=0\\L'_y(x,y,\lambda)=0\\L'_\lambda(x,y,\lambda)=0\end{cases},得到可能的极值点

  3. 将求出的可能的极值点带入f(x,y)f(x,y)中,根据实际情况去判断

几何意义

设给定目标函数f(x,y)f(x,y),约束条件为ϕ(x,y)=0\phi(x,y)=0

在这里插入图片描述

如图所示,曲线LL为约束条件ϕ(x,y)=0\phi(x,y)=0f(x,y)=Cf(x,y)=C为目标函数的等值线族

f(x,y),ϕ(x,y)f(x,y),\phi(x,y)偏导数都连续的条件下,目标函数f(x,y)f(x,y)在约束条件ϕ(x,y)=0\phi(x,y)=0下的可能极值点M(x0,y0)M(x_0,y_0),从几何上看,必是目标函数等值线曲线族中与约束条件相切的那个切点

因为两曲线在切点处必有公切线,所以目标函数等值线在点M(x0,y0)M(x_0,y_0)处法向量{fx(x0,y0),fy(x0,y0)}\{f'_x(x_0,y_0),f'_y(x_0,y_0)\}与约束条件曲线在点M(x0,y0)M(x_0,y_0)处法向量{ϕx(x0,y0),ϕy(x0,y0)}\{\phi'_x(x_0,y_0),\phi'_y(x_0,y_0)\}平行,即fx(x0,y0)ϕx(x0,y0)=fy(x0,y0)ϕy(x0,y0)\begin{aligned}\frac{f'_x(x_0,y_0)}{\phi'_x(x_0,y_0)}=\frac{f'_y(x_0,y_0)}{\phi'_y(x_0,y_0)}\end{aligned}

也就是说存在实数λ\lambda,使下式成立{fx(x0,y0),fy(x0,y0)}+λ{ϕx(x0,y0),ϕy(x0,y0)}=0\{f'_x(x_0,y_0),f'_y(x_0,y_0)\}+\lambda\{\phi'_x(x_0,y_0),\phi'_y(x_0,y_0)\}=0

需要注意的是,目标函数等值线与约束条件曲线的切点未必就是目标函数f(x,y)f(x,y)在约束条件ϕ(x,y)=0\phi(x,y)=0下的极值点(如图中的M2M_2点)

链接:baike.baidu.com/item/%E6%8B…

 

例2:求f(x,y,z)f(x,y,z)在闭区域DD上的最值

先求无条件极值{fx=0fy=0fz=0\begin{cases}f'_x=0\\f'_y=0\\f'_z=0\end{cases},求出可能的极值点,及驻点

再求条件极值,令L=(x,y,z,λ)=f(x,y,z)+λϕL=(x,y,z,\lambda)=f(x,y,z)+\lambda\phi

{Lx=0Ly=0Lz=0Lλ=0\begin{cases}L'_x=0\\L'_y=0\\L'_z=0\\L'_\lambda=0\end{cases},求得可能的极值

两个结果对照,都存在的点即为极值,最大的即为最大值,最小的即为最小值

 

例3:求函数u=xyzu=xyz在附加条件1x+1y+1z=1a(x>0,y>0,z>0,a>0)\frac1x+\frac1y+\frac1z=\frac1a\quad(x>0,y>0,z>0,a>0)下的极值

F(x,y,z,λ)=xyz+λ(1x+1y+1z1a)F(x,y,z,\lambda)=xyz+\lambda(\frac1x+\frac1y+\frac1z-\frac1a)

{Fx=yzλx2=0(1)Fy=xzλy2=0(2)Fz=xyλz2=0(3)Fλ=1x+1y+1z1a=0(4)\begin{cases}\frac{\partial F}{\partial x}=yz-\frac\lambda{x^2}=0\quad\text{(1)}\\\frac{\partial F}{\partial y}=xz-\frac\lambda{y^2}=0\quad\text{(2)}\\\frac{\partial F}{\partial z}=xy-\frac\lambda{z^2}=0\quad\text{(3)}\\\frac{\partial F}{\partial \lambda}=\frac1x+\frac1y+\frac1z-\frac1a=0\quad\text{(4)}\end{cases}

λ=0\lambda=0时,不符合题意

λ0\lambda\ne0

(1)x(2)y(1)\cdot x-(2)\cdot yλx=λy\frac\lambda x=\frac\lambda y

(1)x(3)z(1)\cdot x-(3)\cdot zλx=λz\frac\lambda x=\frac\lambda z

x=y=zx=y=z

x=y=zx=y=z代入(4)(4)式得

3x=1a\frac3x=\frac1a,故x=y=z=3ax=y=z=3a

1z=1a1x1y\frac1z=\frac1a-\frac1x-\frac1y,得z=11a1x1yz=\frac1{\frac1a-\frac1x-\frac1y}

代入u=xyzu=xyz中,得u=xyz(x,y)u=xy\cdot z(x,y)

(注意此处应当验证无条件极值(3a,3a,3a)(3a,3a,3a)是可能存在的极值点,但由于条件极值只有一个答案,所以此处过程省略。如果按照一般步骤先算无条件极值,再算条件极值,则不能省略)

u极小值(3a,3a,3a)=27a3u_{\text{极小值}}(3a,3a,3a)=27a^3