Kafka的TCP链接

1,174 阅读12分钟

为何采用 TCP?

Apache Kafka 的所有通信都是基于 TCP 的,而不是基于 HTTP 或其他协议。无论是生产者、消费者,还是 Broker 之间的通信都是如此。你可能会问,为什么 Kafka 不使用 HTTP 作为底层的通信协议呢?其实这里面的原因有很多,但最主要的原因在于 TCP 和 HTTP 之间的区别。在开发客户端时,能够利用 TCP 本身提供的一些高级功能,比如多路复用请求以及同时轮询多个连接的能力。

所谓的多路复用请求,即 multiplexing request,是指将两个或多个数据流合并到底层单一物理连接中的过程。TCP 的多路复用请求会在一条物理连接上创建若干个虚拟连接,每个虚拟连接负责流转各自对应的数据流。其实严格来说,TCP 并不能多路复用,它只是提供可靠的消息交付语义保证,比如自动重传丢失的报文。

更严谨地说,作为一个基于报文的协议,TCP 能够被用于多路复用连接场景的前提是,上层的应用协议(比如 HTTP)允许发送多条消息。不过,我们今天并不是要详细讨论 TCP 原理,因此你只需要知道这是社区采用 TCP 的理由之一就行了。

除了 TCP 提供的这些高级功能有可能被 Kafka 客户端的开发人员使用之外,社区还发现,目前已知的 HTTP 库在很多编程语言中都略显简陋。基于这两个原因,Kafka 社区决定采用 TCP 协议作为所有请求通信的底层协议。

Kafka 生产者程序概览

Kafka 的 Java 生产者 API 主要的对象就是 KafkaProducer。通常我们开发一个生产者的步骤有 4 步。

第 1 步:构造生产者对象所需的参数对象。

第 2 步:利用第 1 步的参数对象,创建 KafkaProducer 对象实例。

第 3 步:使用 KafkaProducer 的 send 方法发送消息。

第 4 步:调用 KafkaProducer 的 close 方法关闭生产者并释放各种系统资源。

java代码:

Properties props = new Properties ();
props.put(“参数 1”, “参数 1 的值”);
props.put(“参数 2”, “参数 2 的值”);
……
try (Producer<String, String> producer = new KafkaProducer<>(props)) {
            producer.send(new ProducerRecord<String, String>(……), callback);
	……
}

当我们开发一个 Producer 应用时,生产者会向 Kafka 集群中指定的主题(Topic)发送消息,这必然涉及与 Kafka Broker 创建 TCP 连接。那么,Kafka 的 Producer 客户端是如何管理这些 TCP 连接的呢?

何时创建 TCP 连接?

要回答上面这个问题,我们首先要弄明白生产者代码是什么时候创建 TCP 连接的。就上面的那段代码而言,可能创建 TCP 连接的地方有两处:Producer producer = new KafkaProducer(props) 和 producer.send(msg, callback)。你觉得连向 Broker 端的 TCP 连接会是哪里创建的呢?前者还是后者,抑或是两者都有?

首先,生产者应用在创建 KafkaProducer 实例时是会建立与 Broker 的 TCP 连接的。其实这种表述也不是很准确,应该这样说:在创建 KafkaProducer 实例时,生产者应用会在后台创建并启动一个名为 Sender 的线程,该 Sender 线程开始运行时首先会创建与 Broker 的连接。

你也许会问:怎么可能是这样?如果不调用 send 方法,这个 Producer 都不知道给哪个主题发消息,它又怎么能知道连接哪个 Broker 呢?难不成它会连接 bootstrap.servers 参数指定的所有 Broker 吗?嗯,是的,Java Producer 目前还真是这样设计的。

我在这里稍微解释一下 bootstrap.servers 参数。它是 Producer 的核心参数之一,指定了这个 Producer 启动时要连接的 Broker 地址。请注意,这里的“启动时”,代表的是 Producer 启动时会发起与这些 Broker 的连接。因此,如果你为这个参数指定了 1000 个 Broker 连接信息,那么很遗憾,你的 Producer 启动时会首先创建与这 1000 个 Broker 的 TCP 连接。

在实际使用过程中,我并不建议把集群中所有的 Broker 信息都配置到 bootstrap.servers 中,通常你指定 3~4 台就足以了。因为 Producer 一旦连接到集群中的任一台 Broker,就能拿到整个集群的 Broker 信息,故没必要为 bootstrap.servers 指定所有的 Broker。

在 KafkaProducer 实例被创建后以及消息被发送前,Producer 应用就开始创建与两台 Broker 的 TCP 连接了。当然了,在我的测试环境中,我为 bootstrap.servers 配置了 localhost:9092、localhost:9093 来模拟不同的 Broker,但是这并不影响后面的讨论。另外,日志输出中的最后一行也很关键:它表明 Producer 向某一台 Broker 发送了 METADATA 请求,尝试获取集群的元数据信息——这就是前面提到的 Producer 能够获取集群所有信息的方法。

拿今天的这个 KafkaProducer 创建实例来说,社区的官方文档中提及 KafkaProducer 类是线程安全的。我本人并没有详尽地去验证过它是否真的就是 thread-safe 的,但是大致浏览一下源码可以得出这样的结论:KafkaProducer 实例创建的线程和前面提到的 Sender 线程共享的可变数据结构只有 RecordAccumulator 类,故维护了 RecordAccumulator 类的线程安全,也就实现了 KafkaProducer 类的线程安全。

你不需要了解 RecordAccumulator 类是做什么的,你只要知道它主要的数据结构是一个 ConcurrentMap<TopicPartition, Deque>。TopicPartition 是 Kafka 用来表示主题分区的 Java 对象,本身是不可变对象。而 RecordAccumulator 代码中用到 Deque 的地方都有锁的保护,所以基本上可以认定 RecordAccumulator 类是线程安全的。

说了这么多,我其实是想说,纵然 KafkaProducer 是线程安全的,我也不赞同创建 KafkaProducer 实例时启动 Sender 线程的做法。写了《Java 并发编程实践》的那位布赖恩·格茨(Brian Goetz)大神,明确指出了这样做的风险:在对象构造器中启动线程会造成 this 指针的逃逸。理论上,Sender 线程完全能够观测到一个尚未构造完成的 KafkaProducer 实例。当然,在构造对象时创建线程没有任何问题,但最好是不要同时启动它。

针对 TCP 连接何时创建的问题,目前我们的结论是这样的:TCP 连接是在创建 KafkaProducer 实例时建立的。那么,我们想问的是,它只会在这个时候被创建吗?

不是,TCP 连接还可能在两个地方被创建:一个是在更新元数据后,另一个是在消息发送时。为什么说是可能?因为这两个地方并非总是创建 TCP 连接。当 Producer 更新了集群的元数据信息之后,如果发现与某些 Broker 当前没有连接,那么它就会创建一个 TCP 连接。同样地,当要发送消息时,Producer 发现尚不存在与目标 Broker 的连接,也会创建一个。

接下来,我们来看看 Producer 更新集群元数据信息的两个场景。

场景一:当 Producer 尝试给一个不存在的主题发送消息时,Broker 会告诉 Producer 说这个主题不存在。此时 Producer 会发送 METADATA 请求给 Kafka 集群,去尝试获取最新的元数据信息。

场景二:Producer 通过 metadata.max.age.ms 参数定期地去更新元数据信息。该参数的默认值是 300000,即 5 分钟,也就是说不管集群那边是否有变化,Producer 每 5 分钟都会强制刷新一次元数据以保证它是最及时的数据。

讲到这里,我们可以“挑战”一下社区对 Producer 的这种设计的合理性。目前来看,一个 Producer 默认会向集群的所有 Broker 都创建 TCP 连接,不管是否真的需要传输请求。这显然是没有必要的。再加上 Kafka 还支持强制将空闲的 TCP 连接资源关闭,这就更显得多此一举了。

试想一下,在一个有着 1000 台 Broker 的集群中,你的 Producer 可能只会与其中的 3~5 台 Broker 长期通信,但是 Producer 启动后依次创建与这 1000 台 Broker 的 TCP 连接。一段时间之后,大约有 995 个 TCP 连接又被强制关闭。这难道不是一种资源浪费吗?很显然,这里是有改善和优化的空间的。

何时关闭 TCP 连接?

说完了 TCP 连接的创建,我们来说说它们何时被关闭。

Producer 端关闭 TCP 连接的方式有两种:一种是用户主动关闭;一种是 Kafka 自动关闭

我们先说第一种。这里的主动关闭实际上是广义的主动关闭,甚至包括用户调用 kill -9 主动“杀掉”Producer 应用。当然最推荐的方式还是调用 producer.close() 方法来关闭。

第二种是 Kafka 帮你关闭,这与 Producer 端参数 connections.max.idle.ms 的值有关。默认情况下该参数值是 9 分钟,即如果在 9 分钟内没有任何请求“流过”某个 TCP 连接,那么 Kafka 会主动帮你把该 TCP 连接关闭。用户可以在 Producer 端设置 connections.max.idle.ms=-1 禁掉这种机制。一旦被设置成 -1,TCP 连接将成为永久长连接。当然这只是软件层面的“长连接”机制,由于 Kafka 创建的这些 Socket 连接都开启了 keepalive,因此 keepalive 探活机制还是会遵守的。

值得注意的是,在第二种方式中,TCP 连接是在 Broker 端被关闭的,但其实这个 TCP 连接的发起方是客户端,因此在 TCP 看来,这属于被动关闭的场景,即 passive close。被动关闭的后果就是会产生大量的 CLOSE_WAIT 连接,因此 Producer 端或 Client 端没有机会显式地观测到此连接已被中断。

消费者何时创建 TCP 连接?

我们先从消费者创建 TCP 连接开始讨论。消费者端主要的程序入口是 KafkaConsumer 类。和生产者不同的是,构建 KafkaConsumer 实例时是不会创建任何 TCP 连接的,也就是说,当你执行完 new KafkaConsumer(properties) 语句后,你会发现,没有 Socket 连接被创建出来。这一点和 Java 生产者是有区别的,主要原因就是生产者入口类 KafkaProducer 在构建实例的时候,会在后台默默地启动一个 Sender 线程,这个 Sender 线程负责 Socket 连接的创建。

如果 Socket 不是在构造函数中创建的,那么是在 KafkaConsumer.subscribe 或 KafkaConsumer.assign 方法中创建的吗?严格来说也不是。我还是直接给出答案吧:TCP 连接是在调用 KafkaConsumer.poll 方法时被创建的。再细粒度地说,在 poll 方法内部有 3 个时机可以创建 TCP 连接。

1.发起 FindCoordinator 请求时

还记得消费者端有个组件叫协调者(Coordinator)吗?它驻留在 Broker 端的内存中,负责消费者组的组成员管理和各个消费者的位移提交管理。当消费者程序首次启动调用 poll 方法时,它需要向 Kafka 集群发送一个名为 FindCoordinator 的请求,希望 Kafka 集群告诉它哪个 Broker 是管理它的协调者。

不过,消费者应该向哪个 Broker 发送这类请求呢?理论上任何一个 Broker 都能回答这个问题,也就是说消费者可以发送 FindCoordinator 请求给集群中的任意服务器。在这个问题上,社区做了一点点优化:消费者程序会向集群中当前负载最小的那台 Broker 发送请求。负载是如何评估的呢?其实很简单,就是看消费者连接的所有 Broker 中,谁的待发送请求最少。当然了,这种评估显然是消费者端的单向评估,并非是站在全局角度,因此有的时候也不一定是最优解。不过这不并影响我们的讨论。总之,在这一步,消费者会创建一个 Socket 连接。

2.连接协调者时。

Broker 处理完上一步发送的 FindCoordinator 请求之后,会返还对应的响应结果(Response),显式地告诉消费者哪个 Broker 是真正的协调者,因此在这一步,消费者知晓了真正的协调者后,会创建连向该 Broker 的 Socket 连接。只有成功连入协调者,协调者才能开启正常的组协调操作,比如加入组、等待组分配方案、心跳请求处理、位移获取、位移提交等。

3.消费数据时。

消费者会为每个要消费的分区创建与该分区领导者副本所在 Broker 连接的 TCP。举个例子,假设消费者要消费 5 个分区的数据,这 5 个分区各自的领导者副本分布在 4 台 Broker 上,那么该消费者在消费时会创建与这 4 台 Broker 的 Socket 连接。

何时关闭 TCP 连接?

和生产者类似,消费者关闭 Socket 也分为主动关闭和 Kafka 自动关闭。主动关闭是指你显式地调用消费者 API 的方法去关闭消费者,具体方式就是手动调用 KafkaConsumer.close() 方法,或者是执行 Kill 命令,不论是 Kill -2 还是 Kill -9;而 Kafka 自动关闭是由消费者端参数 connection.max.idle.ms控制的,该参数现在的默认值是 9 分钟,即如果某个 Socket 连接上连续 9 分钟都没有任何请求“过境”的话,那么消费者会强行“杀掉”这个 Socket 连接。

不过,和生产者有些不同的是,如果在编写消费者程序时,你使用了循环的方式来调用 poll 方法消费消息,那么上面提到的所有请求都会被定期发送到 Broker,因此这些 Socket 连接上总是能保证有请求在发送,从而也就实现了“长连接”的效果。

针对上面提到的三类 TCP 连接,你需要注意的是,当第三类 TCP 连接成功创建后,消费者程序就会废弃第一类 TCP 连接,之后在定期请求元数据时,它会改为使用第三类 TCP 连接。也就是说,最终你会发现,第一类 TCP 连接会在后台被默默地关闭掉。对一个运行了一段时间的消费者程序来说,只会有后面两类 TCP 连接存在。