OpenCV Tutorials 20 - 高动态范围成像

2,672 阅读5分钟

高动态范围成像

一、引言

如今,大多数数字图像和成像设备每通道使用 8 位整数表示灰度,因此将设备的动态范围限制在两个数量级(实际上是 256 级),而人眼可以适应变化十个数量级的照明条件。当我们拍摄真实世界场景的照片时,明亮区域可能曝光过度,而黑暗区域可能曝光不足,因此我们无法使用单次曝光捕捉所有细节。 HDR 成像适用于每通道使用超过 8 位(通常为 32 位浮点值)的图像,允许更宽的动态范围。获取 HDR 图像的方法有很多种,但最常见的一种是使用以不同曝光值拍摄的场景照片。要结合这些曝光,了解相机的响应函数以及估计它的算法很有用。混合 HDR 图像后,必须将其转换回 8 位才能在普通显示器上查看。这个过程称为色调映射。当场景或相机的对象在镜头之间移动时,会出现额外的复杂性,因为应该配准和对齐具有不同曝光的图像。在本教程中,我们将展示如何从曝光序列中生成和显示 HDR 图像。在我们的例子中,图像已经对齐并且没有移动对象。我们还展示了一种称为曝光融合的替代方法,它可以产生低动态范围的图像。 HDR 管道的每个步骤都可以使用不同的算法来实现,因此请查看参考手册以了解所有这些。

二、曝光序列

download.png

三、代码演示

from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
import os
def cv_show(name, img):
    cv.imshow(name, img)
    cv.waitKey(0)
    cv.destroyAllWindows()
def compare(imgs):
  #  for i in range(len(imgs)):
 #       imgs[i][:,-3:-1,:] = [255,255,255]
    res = np.hstack(imgs)
    cv_show('Compare', res)
def loadExposureSeq(path):
    images = []
    times = []
    with open(os.path.join(path, 'list.txt')) as f:
        content = f.readlines()
    for line in content:
        tokens = line.split()
        images.append(cv.imread(os.path.join(path, tokens[0])))
        # 便于之后的逆CRF操作
        times.append(1 / float(tokens[1]))
    return images, np.asarray(times, dtype=np.float32)
# jupyter 难以手动输入参数,故使用绝对路径
#parser = argparse.ArgumentParser(description='Code for High Dynamic Range Imaging tutorial.')
# parser.add_argument('--input', type=str, help='Path to the directory that contains images and exposure times.')
# args = parser.parse_args()
# if not args.input:
#     parser.print_help()
#     exit(0)
# images, times = loadExposureSeq(args.input)
images, times = loadExposureSeq('exposures/')
calibrate = cv.createCalibrateDebevec()
response = calibrate.process(images, times)
merge_debevec = cv.createMergeDebevec()
hdr = merge_debevec.process(images, times, response)
tonemap = cv.createTonemap(2.2)
ldr = tonemap.process(hdr)
merge_mertens = cv.createMergeMertens()
fusion = merge_mertens.process(images)
cv.imwrite('fusion.png', fusion * 255)
cv.imwrite('ldr.png', ldr * 255)
cv.imwrite('hdr.hdr', hdr)
True
  1. 代码:github.com/opencv/open…
  2. 样本数据:github.com/opencv/open…

四、解释

1. 加载图像和曝光时间

images, times = loadExposureSeq('exposures/')
# 查看数据集中曝光图像个数
len(images)
16

首先我们从用户自定义文件夹中(此处我采用了教程提供的数据集并将其放置到了同目录下便于载入)载入输入图像以及其曝光时间。文件夹中需要包含图像和list.txt文本文件,其中包含了文件名称和反曝光时间

提供的图像数据集的列表如下:

memorial00.png 0.03125

memorial01.png 0.0625

...

memorial15.png 1024

2. 估计相机响应

calibrate = cv.createCalibrateDebevec()
response = calibrate.process(images, times)
  • 用法如下: cv.createCalibrateDebevec( [, samples[, lambda_[, random]]] ) -> retval
  • 参数含义:
  1. samples :number of pixel locations to use
  2. lambda :smoothness term weight. Greater values produce smoother results, but can alter the response.
  3. random :if true sample pixel locations are chosen at random, otherwise they form a rectangular grid.

很多 HDR 构建算法都需要了解相机响应函数(CRF)。 我们使用一种校准算法来估计所有 256 个像素值的逆 CRF

3. 形成HDR图像

merge_debevec = cv.createMergeDebevec()
# 利用逆CRF形成HDR图像
hdr = merge_debevec.process(images, times, response)
  • 用法如下: cv.createMergeMertens( [, contrast_weight[, saturation_weight[, exposure_weight]]] ) -> retval
  • 参数含义:
  1. contrast_weight :contrast measure weight. See MergeMertens.
  2. saturation_weight: saturation measure weight
  3. exposure_weight :well-exposedness measure weight

我们使用 Debevec 的加权方案,使用上一项中计算的响应来构建 HDR 图像。

4. 对 HDR 图像进行色调映射

tonemap = cv.createTonemap(2.2)
ldr = tonemap.process(hdr)
cv_show('Result', ldr)
  • 用法如下: cv.createTonemap( [, gamma] ) -> retval
  • 参数含义:
  1. gamma :positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma equal to 2.2f is suitable for most displays. Generally gamma > 1 brightens the image and gamma < 1 darkens it.

由于我们想在普通 LDR 显示器上看到我们的结果,我们必须将 HDR 图像映射到 8 位范围,保留大部分细节。 这是色调映射方法的主要目标。 我们使用带有双边滤波的色调映射器,并将 2.2 设置为 gamma 校正的值。

5. 实现曝光融合

merge_mertens = cv.createMergeMertens()
fusion = merge_mertens.process(images)

如果我们不需要 HDR 图像,还有另一种方法可以合并我们的曝光。 这个过程称为曝光融合,并产生不需要伽马校正的 LDR 图像。 它也不使用照片的曝光值。

compare([ldr,fusion])

download.png

左边是对HDR图像直接进行色调映射的结果,只会保留大部分细节,右边图像是使用所有输入图像序列进行图像曝光融合的结果

请注意,HDR 图像不能以一种常见的图像格式存储,因此我们将其保存为 Radiance 图像 (.hdr)。 此外,所有 HDR 成像函数都返回 [0, 1] 范围内的结果,因此我们应该将结果乘以 255。您可以尝试其他色调映射算法:cv::TonemapDrago、cv::TonemapMantiuk 和 cv::TonemapReinhard 您还可以调整 您自己的照片的 HDR 校准和色调映射方法参数。

# 修改gamma使整幅图像变亮
tonemap = cv.createTonemap(10)
ldr = tonemap.process(hdr)
cv_show('Result', ldr)

download.png

五、补充资源

  1. Paul E Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from photographs. In ACM SIGGRAPH 2008 classes, page 31. ACM, 2008. [57]
  2. Mark A Robertson, Sean Borman, and Robert L Stevenson. Dynamic range improvement through multiple exposures. In Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on, volume 3, pages 159–163. IEEE, 1999. [207]
  3. Tom Mertens, Jan Kautz, and Frank Van Reeth. Exposure fusion. In Computer Graphics and Applications, 2007. PG'07. 15th Pacific Conference on, pages 382–390. IEEE, 2007. [170]-range_imaging
  4. Recovering High Dynamic Range Radiance Maps from Photographs (webpage) www.pauldebevec.com/Research/HD…