Go语言内存优化与落地实践-1|青训营笔记

44 阅读2分钟

这是我参与「第三届青训营-后端场」笔记创作活动的的第1篇笔记。

进行性能优化的目的

  • 提升软件系统处理能力,减少不必要的消耗,充分发掘计算机算力
  • 用户体验:带来用户体验的提升
  • 资源高效利用:降低成本,提升效率

性能优化的层面

  • 业务层优化
    • 针对特定场景,具体问题,具体分析
    • 容易获得较大性能收益
  • 语言运行时优化
    • 解决更通用的性能问题
    • 考虑更多场景
    • Tradeoffs
  • 数据驱动
    • 自动化性能分析工具——pprof
    • 依靠数据而非猜测
    • 首先优化最大瓶颈

自动内存管理

  • 动态内存
    • 程序在运行时根据需求动态分配的内存:malloc()
  • 自动内存管理(垃圾回收):由程序语言的运行时系统回收动态内存
    • 避免手动内存管理,专注于实现业务逻辑
    • 保证内存使用的正确性安全性:double-free problem,use-after-free problem
  • 三个任务
    • 为新对象分配空间
    • 找到存活对象
    • 回收死亡对象的内存空间
  • 相关概念
    • Mutator:业务线程,分配新对象,修改对象指向关系
    • Collector:GC线程,找到存活对象,回收死亡对象的内存空间
    • Serial GC:只有一个collector
    • Parallel GC:支持多个collectors同时回收的GC算法
    • Concurrent GC:mutator(s)和 collector(s)可以同时执行

image.png

  • 追踪垃圾回收

  • 对象被回收的条件:指针指向关系不可达的对象

  • 标记根对象

    • 静态变量、全局变量、常量、线程栈等
  • 标记:找到可达对象

    • 求指针指向关系的传递闭包:从根对象出发,找到所有可达对象
  • 清理:所有不可达对象

    • 将存活对象复制到另外的内存空间(Copying GC)
    • 将死亡对象的内存标记为可分配(Mark-sweep GC)
    • 移动并整理存活对象(Mark-compact GC)
  • 根据对象的生命周期,使用不同的标记和清理策略