说明
正多面体,也叫 柏拉图多面体,共有五种正多面体:即是正四面体、正六面体、正八面体、正十二面体和正二十面体。接下来我们从正四面体开始,用代码构造全部 5 个正多面体系列。
类型 | 英文名 | 面数 | 棱数 | 顶点数 | 每面边数 | 每顶点棱数 |
---|---|---|---|---|---|---|
正4面体 | Tetrahedron | 4 | 6 | 4 | 3 | 3 |
正6面体 | Hexahedron | 6 | 12 | 8 | 4 | 3 |
正8面体 | Octahedron | 8 | 12 | 6 | 3 | 4 |
正12面体 | Dogecahedron | 12 | 30 | 20 | 5 | 3 |
正20面体 | Icosahedron | 20 | 30 | 12 | 3 | 5 |
几何
第一步,根据网络百科可得知正四面体有以下几何关系:
第二步,根据这些几何关系,求出四个点的坐标:
let a: Float = 4 * radius / sqrtf(6)//棱长
let r = radius / 3 //内切球半径
let bz = sqrtf(2) * 2 * r
let points: [SIMD3<Float>] = [
SIMD3<Float>(0, radius, 0),
SIMD3<Float>(a/2, -r, -sqrtf(2)*r),
SIMD3<Float>(0, -r, bz),
SIMD3<Float>(-a/2, -r, -sqrtf(2)*r)
]
//第三步修改这里,重复三次,以便对应不同的法线,让面显示出棱角
//meshPositions.append(contentsOf: points + points + points)
第三步,确定哪三个点组成三角形,注意逆时针旋转才是正面。但这里有个问题:如果两个面共用顶点,那也会共用法线,这样两个面就无法形成锋利的锐角。所以我们需要修改的第二步将顶点重复三次,并重新建立索引。
let index: [UInt32] = [
0, 2, 1,
0, 3, 2,
0, 1, 3,
2, 3, 1
]
var countDict: [UInt32:Int] = [:]
for ind in index {
let count = countDict[ind] ?? 0
indices.append(ind + UInt32(pointCount * count))
countDict[ind] = count + 1
}
因为前面的顶点是 4 个点按顺序重复三次,那么我们在建立索引时,也需要统计每个点用过几次了。如果点 a 已经被用过 2 次了,那么下次再用到时,应该使用第三轮中的点:也就是点 a 原本的索引 ind,加上每轮点数 pointCount * 2 。
第四步,求出各个面的法线,这里可以将每个面的顶点取出,求平均值也就是中心点坐标,归一化之后做为整个面的法线,注意顺序要和顶点一致。
for i in 0..<triangles {
let ai = 3 * i
let bi = 3 * i + 1
let ci = 3 * i + 2
let i0 = indices[ai]
let i1 = indices[bi]
let i2 = indices[ci]
let v0 = meshPositions[Int(i0)]
let v1 = meshPositions[Int(i1)]
let v2 = meshPositions[Int(i2)]
let faceNormal = simd_normalize((v0 + v1 + v2) / 3)
normals[Int(i0)] = faceNormal
normals[Int(i1)] = faceNormal
normals[Int(i2)] = faceNormal
}
第五步,这一步是可选的,细分后贴图更细腻,但不影响几何形状。我们可以做一个平面的细分,也就是把每个面的三角形细分成 4 个小三角形,取各个边的中心,然后连接成新的小三角形。注意也要同时增加这三个点的法线。
第六步,我们直接根据点的位置,计算一下贴图坐标 UV。这里,我们根据正四面体的外接球,来计算贴图坐标:假设有个外接球,先把图贴在球体上,再计算正四面体各顶点在球体上的坐标来得到贴图 UV。由于正四面体顶点受限,不能任意增加顶点作为起点和终点,无法实现完美的环绕贴图,所以这里贴图采用了对称模式。
代码
/// 正四面体,radius 为外接球半径,res 三角面剖分次数
public static func generateTetrahedron(radius: Float, res: Int = 0) throws -> MeshResource {
let pointCount = 4
var triangles = 4
var vertices = pointCount * 3
var descr = MeshDescriptor()
var meshPositions: [SIMD3<Float>] = []
var indices: [UInt32] = []
var normals: [SIMD3<Float>] = Array(repeating: .zero, count: vertices)
var textureMap: [SIMD2<Float>] = []
let a: Float = 4 * radius / sqrtf(6)//棱长
let r = radius / 3 //内切球半径
let bz = sqrtf(2) * 2 * r
let points: [SIMD3<Float>] = [
SIMD3<Float>(0, radius, 0),
SIMD3<Float>(a/2, -r, -sqrtf(2)*r),
SIMD3<Float>(0, -r, bz),
SIMD3<Float>(-a/2, -r, -sqrtf(2)*r)
]
meshPositions.append(contentsOf: points + points + points)
let index: [UInt32] = [
0, 2, 1,
0, 3, 2,
0, 1, 3,
2, 3, 1
]
var countDict: [UInt32:Int] = [:]
for ind in index {
let count = countDict[ind] ?? 0
indices.append(ind + UInt32(pointCount * count))
countDict[ind] = count + 1
}
for i in 0..<triangles {
let ai = 3 * i
let bi = 3 * i + 1
let ci = 3 * i + 2
let i0 = indices[ai]
let i1 = indices[bi]
let i2 = indices[ci]
let v0 = meshPositions[Int(i0)]
let v1 = meshPositions[Int(i1)]
let v2 = meshPositions[Int(i2)]
let faceNormal = simd_normalize((v0 + v1 + v2) / 3)
normals[Int(i0)] = faceNormal
normals[Int(i1)] = faceNormal
normals[Int(i2)] = faceNormal
}
for _ in 0..<res {
let newTriangles = triangles * 4
let newVertices = vertices + triangles * 3
var newIndices: [UInt32] = []
var pos: SIMD3<Float>
for i in 0..<triangles {
let ai = 3 * i
let bi = 3 * i + 1
let ci = 3 * i + 2
let i0 = indices[ai]
let i1 = indices[bi]
let i2 = indices[ci]
let v0 = meshPositions[Int(i0)]
let v1 = meshPositions[Int(i1)]
let v2 = meshPositions[Int(i2)]
let faceNormal = normals[Int(i0)]
normals.append(contentsOf: [faceNormal, faceNormal, faceNormal])
// a
pos = (v0 + v1) * 0.5
meshPositions.append(pos)
// b
pos = (v1 + v2) * 0.5
meshPositions.append(pos)
// c
pos = (v2 + v0) * 0.5
meshPositions.append(pos)
let a = UInt32(ai + vertices)
let b = UInt32(bi + vertices)
let c = UInt32(ci + vertices)
newIndices.append(contentsOf: [
i0, a, c,
a, i1, b,
a, b, c,
c, b, i2
])
}
indices = newIndices
triangles = newTriangles
vertices = newVertices
}
for i in 0..<meshPositions.count {
let p = meshPositions[i]
let n = p
textureMap.append(SIMD2<Float>(abs(atan2(n.x, n.z)) / .pi, 1 - acos(n.y/radius) / .pi))
}
descr.positions = MeshBuffers.Positions(meshPositions)
descr.normals = MeshBuffers.Normals(normals)
descr.textureCoordinates = MeshBuffers.TextureCoordinates(textureMap)
descr.primitives = .triangles(indices)
return try MeshResource.generate(from: [descr])
}