算法题每日一练---第70天:最长递增子序列

·  阅读 2123
算法题每日一练---第70天:最长递增子序列

一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第4天,点击查看活动详情

一、问题描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

题目链接:最长递增子序列

二、题目要求

样例 1

输入: nums = [10,9,2,5,3,7,101]
输出: 4
解释: 最长递增子序列是 [2,3,7,101],因此长度为 4 。
复制代码

样例 2

输入: nums = [0,1,0,3,2,3]
输出: 4
复制代码

考察

1.子序列、动态规划
2.建议用时15~35min
复制代码

三、问题分析

对于这一道可以使用动态规划、二分查找解决,动态规划虽然执行用时多一些,但理解起来比较容易,所以用动态规划完成这一题。

还记得我们之前对于动态规划的三步走战略吗,之前的动态规划的力扣习题相当于入门,如果没有了解过动态规划,可以试着从这一篇入门题解开始做起:

算法题每日一练---第34天: 青蛙跳台阶开始做起。

还是用我们的三步走战略:

第一步 含义搞懂:

这是道一维的动态规划,其中dp[i]就代表第i个下标为终点的子序列最大长度。

第二步 变量初始:

变量初始的话,对于每一个dp[i],最坏的情况就是前面的数字全部比i大,那它就只能是孤零零的1了。

第三步 规律归纳:

递增子序列.gif

在确定dp[i]的值之前,dp[0~i-1]的值我们应该都知道了。

定义j=i-1

那我们从0~j开始遍历,只要当前位置nums[i]>nums[j],那我们就把nums[i]加入dp[j]的大家庭之中,

dp[i]=dp[j]+1;(加入的这个1就是nums[i])。

规律这不就归纳出来了,因为dp[i]一开始都初始化1,只要nums[i]>nums[j],那么我们比较一下大小就行了

dp[i]=max(dp[j]+1,dp[i]);

三步走,打完收工!

四、编码实现

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int i,j,n=nums.size(),dp[n+2],ans=0;//初始化变量
        for(i=0;i<n;i++)//循环i
        {
            dp[i]=1;//变量初始
            for(j=0;j<i;j++)//遍历i之前的数字
            {
                if(nums[j]<nums[i])//如果i比j对应的数据大
                    dp[i]=max(dp[j]+1,dp[i]);//nums[i]加入大家庭
            }
            ans=max(ans,dp[i]);//寻找最大值
        }
        return ans;//返回结果
    }
};
复制代码

五、测试结果

2.png

3.png

分类:
前端
分类:
前端
收藏成功!
已添加到「」, 点击更改