数据采集部分
这个部分的代码并没有运行,因为在data文件夹中,已经将准备好了要导入neo4j的json数据,所以我们不用在获取一遍数据了,这里只是做代码的解读
文件位置:
prepare_data
文件夹
data_spider.py
"""
爬虫代码不做深入分析,比较简单,看好对应要提取的位置即可
"""
import urllib.request
import urllib.parse
from lxml import etree
import pymongo
import re
'''基于网站的犯罪案件采集'''
class CrimeSpider:
def __init__(self):
self.conn = pymongo.MongoClient()
self.db = self.conn['medical']
self.col = self.db['data']
'''根据url,请求html'''
def get_html(self, url):
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/51.0.2704.63 Safari/537.36'}
req = urllib.request.Request(url=url, headers=headers)
res = urllib.request.urlopen(req)
html = res.read().decode('gbk')
return html
'''url解析'''
def url_parser(self, content):
selector = etree.HTML(content)
urls = ['http://www.anliguan.com' + i for i in selector.xpath('//h2[@class="item-title"]/a/@href')]
return urls
'''测试'''
def spider_main(self):
for page in range(1, 11000):
try:
basic_url = 'http://jib.xywy.com/il_sii/gaishu/%s.htm'%page
cause_url = 'http://jib.xywy.com/il_sii/cause/%s.htm'%page
prevent_url = 'http://jib.xywy.com/il_sii/prevent/%s.htm'%page
symptom_url = 'http://jib.xywy.com/il_sii/symptom/%s.htm'%page
inspect_url = 'http://jib.xywy.com/il_sii/inspect/%s.htm'%page
treat_url = 'http://jib.xywy.com/il_sii/treat/%s.htm'%page
food_url = 'http://jib.xywy.com/il_sii/food/%s.htm'%page
drug_url = 'http://jib.xywy.com/il_sii/drug/%s.htm'%page
data = {}
data['url'] = basic_url
data['basic_info'] = self.basicinfo_spider(basic_url)
data['cause_info'] = self.common_spider(cause_url)
data['prevent_info'] = self.common_spider(prevent_url)
data['symptom_info'] = self.symptom_spider(symptom_url)
data['inspect_info'] = self.inspect_spider(inspect_url)
data['treat_info'] = self.treat_spider(treat_url)
data['food_info'] = self.food_spider(food_url)
data['drug_info'] = self.drug_spider(drug_url)
print(page, basic_url)
self.col.insert(data)
except Exception as e:
print(e, page)
return
'''基本信息解析'''
def basicinfo_spider(self, url):
html = self.get_html(url)
selector = etree.HTML(html)
title = selector.xpath('//title/text()')[0]
category = selector.xpath('//div[@class="wrap mt10 nav-bar"]/a/text()')
desc = selector.xpath('//div[@class="jib-articl-con jib-lh-articl"]/p/text()')
ps = selector.xpath('//div[@class="mt20 articl-know"]/p')
infobox = []
for p in ps:
info = p.xpath('string(.)').replace('\r','').replace('\n','').replace('\xa0', '').replace(' ', '').replace('\t','')
infobox.append(info)
basic_data = {}
basic_data['category'] = category
basic_data['name'] = title.split('的简介')[0]
basic_data['desc'] = desc
basic_data['attributes'] = infobox
return basic_data
'''treat_infobox治疗解析'''
def treat_spider(self, url):
html = self.get_html(url)
selector = etree.HTML(html)
ps = selector.xpath('//div[starts-with(@class,"mt20 articl-know")]/p')
infobox = []
for p in ps:
info = p.xpath('string(.)').replace('\r','').replace('\n','').replace('\xa0', '').replace(' ', '').replace('\t','')
infobox.append(info)
return infobox
'''treat_infobox治疗解析'''
def drug_spider(self, url):
html = self.get_html(url)
selector = etree.HTML(html)
drugs = [i.replace('\n','').replace('\t', '').replace(' ','') for i in selector.xpath('//div[@class="fl drug-pic-rec mr30"]/p/a/text()')]
return drugs
'''food治疗解析'''
def food_spider(self, url):
html = self.get_html(url)
selector = etree.HTML(html)
divs = selector.xpath('//div[@class="diet-img clearfix mt20"]')
try:
food_data = {}
food_data['good'] = divs[0].xpath('./div/p/text()')
food_data['bad'] = divs[1].xpath('./div/p/text()')
food_data['recommand'] = divs[2].xpath('./div/p/text()')
except:
return {}
return food_data
'''症状信息解析'''
def symptom_spider(self, url):
html = self.get_html(url)
selector = etree.HTML(html)
symptoms = selector.xpath('//a[@class="gre" ]/text()')
ps = selector.xpath('//p')
detail = []
for p in ps:
info = p.xpath('string(.)').replace('\r','').replace('\n','').replace('\xa0', '').replace(' ', '').replace('\t','')
detail.append(info)
symptoms_data = {}
symptoms_data['symptoms'] = symptoms
symptoms_data['symptoms_detail'] = detail
return symptoms, detail
'''检查信息解析'''
def inspect_spider(self, url):
html = self.get_html(url)
selector = etree.HTML(html)
inspects = selector.xpath('//li[@class="check-item"]/a/@href')
return inspects
'''通用解析模块'''
def common_spider(self, url):
html = self.get_html(url)
selector = etree.HTML(html)
ps = selector.xpath('//p')
infobox = []
for p in ps:
info = p.xpath('string(.)').replace('\r', '').replace('\n', '').replace('\xa0', '').replace(' ','').replace('\t', '')
if info:
infobox.append(info)
return '\n'.join(infobox)
'''检查项抓取模块'''
def inspect_crawl(self):
for page in range(1, 3685):
try:
url = 'http://jck.xywy.com/jc_%s.html'%page
html = self.get_html(url)
data = {}
data['url']= url
data['html'] = html
self.db['jc'].insert(data)
print(url)
except Exception as e:
print(e)
handler = CrimeSpider()
handler.inspect_crawl()
数据对应关系如图:
以血管病为例,我们来看数据获取的部分,主要分析提取哪些数据
我们将抓取好的数据,放到mongodb中进行保存
build_data.py
import pymongo
from lxml import etree
import os
from max_cut import *
class MedicalGraph:
def __init__(self):
# 从mongodb中读取我们爬虫拿到的数据
self.conn = pymongo.MongoClient()
cur_dir = '/'.join(os.path.abspath(__file__).split('/')[:-1])
self.db = self.conn['medical']
self.col = self.db['data']
first_words = [i.strip() for i in open(os.path.join(cur_dir, 'first_name.txt'))]
alphabets = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y', 'z']
nums = ['1','2','3','4','5','6','7','8','9','0']
# 停用词的构建,后面过滤使用
self.stop_words = first_words + alphabets + nums
self.key_dict = {
'医保疾病' : 'yibao_status',
"患病比例" : "get_prob",
"易感人群" : "easy_get",
"传染方式" : "get_way",
"就诊科室" : "cure_department",
"治疗方式" : "cure_way",
"治疗周期" : "cure_lasttime",
"治愈率" : "cured_prob",
'药品明细': 'drug_detail',
'药品推荐': 'recommand_drug',
'推荐': 'recommand_eat',
'忌食': 'not_eat',
'宜食': 'do_eat',
'症状': 'symptom',
'检查': 'check',
'成因': 'cause',
'预防措施': 'prevent',
'所属类别': 'category',
'简介': 'desc',
'名称': 'name',
'常用药品' : 'common_drug',
'治疗费用': 'cost_money',
'并发症': 'acompany'
}
# 切词器,在并发症的构建中使用
self.cuter = CutWords()
def collect_medical(self):
cates = []
inspects = []
count = 0
# 对每条数据进行循环遍历
for item in self.col.find():
data = {}
basic_info = item['basic_info']
name = basic_info['name']
if not name:
continue
# 基本信息
data['名称'] = name
data['简介'] = '\n'.join(basic_info['desc']).replace('\r\n\t', '').replace('\r\n\n\n','').replace(' ','').replace('\r\n','\n')
category = basic_info['category']
data['所属类别'] = category
cates += category
inspect = item['inspect_info']
inspects += inspect
attributes = basic_info['attributes']
# 成因及预防
data['预防措施'] = item['prevent_info']
data['成因'] = item['cause_info']
# 并发症,过滤停用词
data['症状'] = list(set([i for i in item["symptom_info"][0] if i[0] not in self.stop_words]))
# 对症状进行处理的时候,以:为分隔得到:前的名词
for attr in attributes:
attr_pair = attr.split(':')
if len(attr_pair) == 2:
key = attr_pair[0]
value = attr_pair[1]
data[key] = value
# 检查
inspects = item['inspect_info']
jcs = []
for inspect in inspects:
jc_name = self.get_inspect(inspect)
if jc_name:
jcs.append(jc_name)
data['检查'] = jcs
# 食物
food_info = item['food_info']
if food_info:
data['宜食'] = food_info['good']
data['忌食'] = food_info['bad']
data['推荐'] = food_info['recommand']
# 药品
drug_info = item['drug_info']
data['药品推荐'] = list(set([i.split('(')[-1].replace(')','') for i in drug_info]))
data['药品明细'] = drug_info
# 构建数据字典
data_modify = {}
for attr, value in data.items():
attr_en = self.key_dict.get(attr)
if attr_en:
data_modify[attr_en] = value
if attr_en in ['yibao_status', 'get_prob', 'easy_get', 'get_way', "cure_lasttime", "cured_prob"]:
data_modify[attr_en] = value.replace(' ','').replace('\t','')
elif attr_en in ['cure_department', 'cure_way', 'common_drug']:
data_modify[attr_en] = [i for i in value.split(' ') if i]
elif attr_en in ['acompany']:
# 在并发症中我们使用前后向切词的方式,构建并发症属性
acompany = [i for i in self.cuter.max_biward_cut(data_modify[attr_en]) if len(i) > 1]
data_modify[attr_en] = acompany
try:
# 我们将处理好的数据放回mongodb中
self.db['medical'].insert(data_modify)
count += 1
print(count)
except Exception as e:
print(e)
return
def get_inspect(self, url):
res = self.db['jc'].find_one({'url':url})
if not res:
return ''
else:
return res['name']
def modify_jc(self):
for item in self.db['jc'].find():
url = item['url']
content = item['html']
selector = etree.HTML(content)
name = selector.xpath('//title/text()')[0].split('结果分析')[0]
desc = selector.xpath('//meta[@name="description"]/@content')[0].replace('\r\n\t','')
self.db['jc'].update({'url':url}, {'$set':{'name':name, 'desc':desc}})
if __name__ == '__main__':
handler = MedicalGraph()
max_cut.py(重点
)
- 最大前项匹配和最大后项匹配我们分别得到了两个字典,并使用启发式的方法选定最终使用的字典。
# 在当前文件夹下并没有看到disease.txt
class CutWords:
def __init__(self):
dict_path = './disease.txt'
self.word_dict, self.max_wordlen = self.load_words(dict_path)
# 加载词典,得到词典中最长的词语的长度和整个词典
def load_words(self, dict_path):
words = list()
max_len = 0
for line in open(dict_path):
wd = line.strip()
if not wd:
continue
if len(wd) > max_len:
max_len = len(wd)
words.append(wd)
return words, max_len
# 最大向前匹配
# 值得学习
def max_forward_cut(self, sent):
# 1.从左向右取待切分汉语句的m个字符作为匹配字段,m为大机器词典中最长词条个数。
# 2.查找大机器词典并进行匹配。若匹配成功,则将这个匹配字段作为一个词切分出来。
cutlist = []
index = 0
while index < len(sent):
matched = False
# 这个地方我们切出来和我们记录的词典中最长的单词的长度的数据,在循环中逐渐减小切出来的长度,这样可以保证我们搜索的时候覆盖到词典中的词语
# 然后对切出来的字段,在整个字典中进行搜索,假设我们没有搜索到,我们减小切分的长度
# 从代码来看我们只是匹配最长的病,我们有两个病,白血病,白血病综合征,当我们搜索到白血病综合征的时候就直接跳出循环了,白血病不会加入切分的list
# 我们最多扫描的次数 max_len * len(word_dict)
for i in range(self.max_wordlen, 0, -1):
cand_word = sent[index: index + i]
if cand_word in self.word_dict:
cutlist.append(cand_word)
matched = True
break
# 如果没有匹配上,则按字符切分
if not matched:
i = 1
cutlist.append(sent[index])
index += i
return cutlist
# 最大向后匹配
# 值得学习
def max_backward_cut(self, sent):
# 1.从右向左取待切分汉语句的m个字符作为匹配字段,m为大机器词典中最长词条个数。
# 2.查找大机器词典并进行匹配。若匹配成功,则将这个匹配字段作为一个词切分出来。
cutlist = []
index = len(sent)
max_wordlen = 5
while index > 0:
matched = False
# 和上面的套路一样我们从最大
for i in range(self.max_wordlen, 0, -1):
tmp = (i + 1)
# 我们这个部分是从后向前取词,第一次是:白血病综合征,第二次是:血病综合征,第三次是:病综合征,最后能匹配上:综合征
cand_word = sent[index - tmp: index]
# 如果匹配上,则将字典中的字符加入到切分字符中
# 和上面一样我们之后保留匹配上的最长的词
if cand_word in self.word_dict:
cutlist.append(cand_word)
matched = True
break
# 如果没有匹配上,则按字符切分
# 记录单字的作用,主要是在下面的启发式决定最终词典的过程中使用
if not matched:
tmp = 1
cutlist.append(sent[index - 1])
index -= tmp
return cutlist[::-1]
# 双向最大向前匹配
# 值得学习
def max_biward_cut(self, sent):
# 双向最大匹配法是将正向最大匹配法得到的分词结果和逆向最大匹配法的到的结果进行比较,从而决定正确的分词方法。
# 启发式规则:
# 1.如果正反向分词结果词数不同,则取分词数量较少的那个。
# 2.如果分词结果词数相同 a.分词结果相同,就说明没有歧义,可返回任意一个。 b.分词结果不同,返回其中单字较少的那个。
forward_cutlist = self.max_forward_cut(sent)
backward_cutlist = self.max_backward_cut(sent)
count_forward = len(forward_cutlist)
count_backward = len(backward_cutlist)
def compute_single(word_list):
num = 0
for word in word_list:
if len(word) == 1:
num += 1
return num
if count_forward == count_backward:
if compute_single(forward_cutlist) > compute_single(backward_cutlist):
return backward_cutlist
else:
return forward_cutlist
elif count_backward > count_forward:
return forward_cutlist
else:
return backward_cutlist
这个地方我们只是简单的进行前项分词和后项分词,并使用启发式的方式进行决定最终的切分后的词典。这个程序相较上面两个程序更有学习的价值。