HashMap线程不安全的示例

959 阅读5分钟

1、多线程的put可能导致元素的丢失

public class ConcurrentIssueDemo1 {

    private static Map<String, String> map = new HashMap<>();

    public static void main(String[] args) {
        // 线程1 => t1
        new Thread(new Runnable() {
            @Override
            public void run() {
                for (int i = 0; i < 99999999; i++) {
                    map.put("thread1_key" + i, "thread1_value" + i);
                }
            }
        }).start();
        // 线程2 => t2
        new Thread(new Runnable() {
            @Override
            public void run() {
                for (int i = 0; i < 99999999; i++) {
                    map.put("thread2_key" + i, "thread2_value" + i);
                }
            }
        }).start();
    }
}

注意⚠️:上述代码可能会出现线程不安全的情况,不是直接运行就会出现线程不安全的情况。

put源码分析

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
  			//初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            //通过hash值计算值在tab中的位置,并将这个位置上的元素赋值给p,如果这个位置为空,则new一个新的node放在这个位置上
            tab[i] = newNode(hash, key, value, null);
        else {
          //tab数组当前index上已经存在元素,向这个元素后追加链表
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                  //新建节点并追加到链表
                    if ((e = p.next) == null) {//#1
                        p.next = newNode(hash, key, value, null);//#2
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

当两个线程同时执行put值,且经过hash值计算在同一个tab数组位置,两个线程都执行完#1后,线程1先执行#2,放入了自己的值,线程2后执行了#2,会覆盖线程1put的值。

2、put和get并发时,可能导致get为null

场景:当线程1执行put时,因为元素个数超出threshold而导致resize,线程2此时执行get,有可能导致这个问题

/**
	* Initializes or doubles table size.  If null, allocates in
  * accord with initial capacity target held in field threshold.
 	* Otherwise, because we are using power-of-two expansion, the
  * elements from each bin must either stay at same index, or move
  * with a power of two offset in the new table.
  *
  * @return the table
*/
final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];#1
        table = newTab;#2
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

在线程1执行到代码#1的时候,用新计算的容量new了一个新的hash表,#2将新创建的空的hash表赋值给实例变量table。此时table是空的。 如果此时线程2执行get时,就会get出null。

3、JDK7中HashMap并发put可能会造成循环链表,导致get出现死循环

循环链表出现的原因是因为在JDK1.7中扩容时将元素从旧链表中存到链表时使用了头插法,导致扩容前后元素的相对位置不一致,并发扩容时可能会导致循环链表的出现,在JDK1.8中修复了这个问题,1.8使用尾插法来将元素用旧链表迁到新链表中。

void resize(int newCapacity) {   //传入新的容量  
    Entry[] oldTable = table;    //引用扩容前的Entry数组  
    int oldCapacity = oldTable.length;  
    if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了  
        threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了  
        return;  
    }  

    Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组
    transfer(newTable);                         //!!将数据转移到新的Entry数组里,这里包含最重要的重新定位
    table = newTable;                           //HashMap的table属性引用新的Entry数组
    threshold = (int) (newCapacity * loadFactor);//修改阈值  
}
/**
 * Transfers all entries from current table to newTable.
 */
// 关键在于这个transfer方法,这个方法的作用是将旧hash表中的元素rehash到新的hash表中
void transfer(Entry[] newTable, boolean rehash) {
   Entry[] src = table;                   //src引用了旧的Entry数组  
    int newCapacity = newTable.length;  
    for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组  
        Entry<K, V> e = src[j];             //取得旧Entry数组的每个元素  
        if (e != null) {  
            src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)  
            do {  
                Entry<K, V> next = e.next; //#1 
                int i = indexFor(e.hash, newCapacity); //#2!!重新计算每个元素在数组中的位置  
                e.next = newTable[i]; //标记[1]  
                newTable[i] = e;      //将元素放在数组上  
                e = next;             //访问下一个Entry链上的元素  
            } while (e != null);  
        }  
    }  
}

JDK1.7循环链表的形成

image.png

image.png

当两个线程同时执行扩容逻辑,线程2执行到#1语句时,cpu时间片分给线程1,线程1执行完了扩容逻辑,到图2的形式,然后线程2继续执行#2语句,一个循环结束,到达了图3的状态,指针的状态装换到右边key👉指针的状态,再次执行一个循环,到达了图4的状态,最后执行一次循环,到达图5状态,循环链表形成。

get时因为循环链表造成死循环

 public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);//循环条件一直满足,循环行成死循环
            }
        }
        return null;
    }