超分重建 psnr 和 SSIM计算(pytorch实现)

1,253 阅读6分钟

「这是我参与2022首次更文挑战的第20天,活动详情查看:2022首次更文挑战

  • 🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
  • 1-0

    ❤️专栏:AI 领域数据资源整理❤️ 之【有效拒绝假数据】


    👋 Follow me 👋,一起 Get 更多有趣 AI、冲冲冲 🚀 🚀

    🎉 图像处理中,有哪些算法可以用来比较两张图片的相似度?

    • 就计算机视觉领域而言,图像相似度对比传统学习和研究中,最为常见的就是 PSNR、SSIM 这俩指标了
    • 常见于、超分重建、图像修复领域
    • 近两年一些新的顶会论文也会涌现出新的一些图像质量评价指标、不过 PSNR、SSIM 依旧是几乎每篇图像质量相关论文中都会沿袭下来进行对比、凸显自己做出的创新取得了如果厉害的定量指标提升、往往更为直观、和让砖家评委信服

    🎉 此次博文的正文内容如下


    声明:


    把整理的超分重建 SR 和 HR 图片 psnr 和 SSIM计算(pytorch实现)代码粘贴在这里;


    utils_image.py 引用来源如下:

    '''
    modified by Kai Zhang (github: https://github.com/cszn)
    03/03/2019
    https://github.com/twhui/SRGAN-pyTorch
    https://github.com/xinntao/BasicSR
    '''
    
    

    项目结构如下,小伙伴复制了代码,自己按路径整理下即可使用:

    1


    sr_evaluate.py

    from utils import utils_image as util
    import os
    import cv2
    
    # HR_path = 'dataset/benchmark/Set5/HR'
    # SR_path = 'experiments/results/Set5/x4'
    HR_path = 'dataset/benchmark/Urban100/HR'
    # SR_path = 'experiments/results/Urban100/x4'
    SR_path = 'experiments/results/csnla_Urban100'
    
    
    n_channels = 3
    
    def evulate():
        hr_paths = util.get_image_paths(HR_path)
        numbers = len(hr_paths)
        sum_psnr = 0
        max_psnr = 0
        min_psnr = 100
        sum_ssim = 0
        max_ssim = 0
        min_ssim = 1
        for hr_path in hr_paths:
            # img_name, ext = os.path.splitext(os.path.basename(img_path))
            img_name = os.path.basename(hr_path)
            sr_path = os.path.join(SR_path,img_name)
            print(img_name)
            # print(hr_path)
            # print(sr_path)
            img_Hr = util.imread_uint(hr_path, n_channels=n_channels)  # HR image, int8
            img_Sr = util.imread_uint(sr_path, n_channels=n_channels)  # HR image, int8
            psnr = util.calculate_psnr(img_Sr, img_Hr,)
            print(psnr)
            sum_psnr += psnr
            max_psnr = max(max_psnr,psnr)
            min_psnr = min(min_psnr, psnr)
            ssim = util.calculate_ssim(img_Sr, img_Hr,)
            # print(ssim)
            sum_ssim += ssim
            max_ssim = max(max_ssim,ssim)
            min_ssim = min(min_ssim, ssim)
        print('Average psnr = ', sum_psnr / numbers)
        print('min_psnr = ', min_psnr)
        print('Max_psnr = ', max_psnr)
        print('Average ssim = ', sum_ssim / numbers)
        print('min_ssim = ', min_ssim)
        print('Max_ssim = ', max_ssim)
    
    
    def evulate_diff_name():
        hr_paths = util.get_image_paths(HR_path)
        numbers = len(hr_paths)
        sum_psnr = 0
        max_psnr = 0
        min_psnr = 100
        sum_ssim = 0
        max_ssim = 0
        min_ssim = 1
        for hr_path in hr_paths:
            name, ext = os.path.splitext(os.path.basename(hr_path))
            img_name = os.path.basename(hr_path)
            print(img_name)
            temp = str(name) + '_x4_SR.png'
            # print(temp)
            sr_path = os.path.join(SR_path, temp)
            print(sr_path)
            # print(hr_path)
            # print(sr_path)
            img_Hr = util.imread_uint(hr_path, n_channels=n_channels)  # HR image, int8
            img_Sr = util.imread_uint(sr_path, n_channels=n_channels)  # HR image, int8
            # img_Hr = cv2.imread(hr_path)
            # img_Sr = cv2.imread(sr_path)
            psnr = util.calculate_psnr(img_Sr, img_Hr,)
            print(psnr)
            sum_psnr += psnr
            max_psnr = max(max_psnr,psnr)
            min_psnr = min(min_psnr, psnr)
            ssim = util.calculate_ssim(img_Sr, img_Hr,)
            # print(ssim)
            sum_ssim += ssim
            max_ssim = max(max_ssim,ssim)
            min_ssim = min(min_ssim, ssim)
        print('Average psnr = ', sum_psnr / numbers)
        print('min_psnr = ', min_psnr)
        print('Max_psnr = ', max_psnr)
        print('Average ssim = ', sum_ssim / numbers)
        print('min_ssim = ', min_ssim)
        print('Max_ssim = ', max_ssim)
    
    
    if __name__ == '__main__':
        print('-------------------------compute psnr and ssim for evulate sr model---------------------------------')
        # evulate()
        evulate_diff_name()
    
    
    

    utils 目录下的 utils_image.py

    import os
    import math
    import random
    import numpy as np
    import torch
    import cv2
    from torchvision.utils import make_grid
    from datetime import datetime
    # import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    
    '''
    modified by Kai Zhang (github: https://github.com/cszn)
    03/03/2019
    https://github.com/twhui/SRGAN-pyTorch
    https://github.com/xinntao/BasicSR
    '''
    
    IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP']
    
    
    def is_image_file(filename):
        return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
    
    
    def get_timestamp():
        return datetime.now().strftime('%y%m%d-%H%M%S')
    
    
    def imshow(x, title=None, cbar=False, figsize=None):
        plt.figure(figsize=figsize)
        plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
        if title:
            plt.title(title)
        if cbar:
            plt.colorbar()
        plt.show()
    
    
    def surf(Z):
        from mpl_toolkits.mplot3d import Axes3D
        fig = plt.figure()
        ax = Axes3D(fig)
        X = np.arange(0, 25, 1)
        Y = np.arange(0, 25, 1)
        
        ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
        # ax3.contour(X, Y, Z, zdim='z', offset=-2, cmap='rainbow)
    #    ax.view_init(elev=45, azim=45)
    #    ax.set_xlabel("x")
    #    plt.title(" ")
        plt.tight_layout(0.9)
        plt.show()
    
    
    
    
    '''
    # =======================================
    # get image pathes of files
    # =======================================
    '''
    
    
    def get_image_paths(dataroot):
        paths = None  # return None if dataroot is None
        if dataroot is not None:
            paths = sorted(_get_paths_from_images(dataroot))
        return paths
    
    
    def _get_paths_from_images(path):
        assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
        images = []
        for dirpath, _, fnames in sorted(os.walk(path)):
            for fname in sorted(fnames):
                if is_image_file(fname):
                    img_path = os.path.join(dirpath, fname)
                    images.append(img_path)
        assert images, '{:s} has no valid image file'.format(path)
        return images
    
    
    '''
    # =======================================
    # makedir
    # =======================================
    '''
    
    
    def mkdir(path):
        if not os.path.exists(path):
            os.makedirs(path)
    
    
    def mkdirs(paths):
        if isinstance(paths, str):
            mkdir(paths)
        else:
            for path in paths:
                mkdir(path)
    
    
    def mkdir_and_rename(path):
        if os.path.exists(path):
            new_name = path + '_archived_' + get_timestamp()
            print('Path already exists. Rename it to [{:s}]'.format(new_name))
            os.rename(path, new_name)
        os.makedirs(path)
    
    
    '''
    # =======================================
    # read image from path
    # Note: opencv is fast
    # but read BGR numpy image
    # =======================================
    '''
    
    
    # ----------------------------------------
    # get single image of size HxWxn_channles (BGR)
    # ----------------------------------------
    def read_img(path):
        # read image by cv2
        # return: Numpy float32, HWC, BGR, [0,1]
        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # cv2.IMREAD_GRAYSCALE
        img = img.astype(np.float32) / 255.
        if img.ndim == 2:
            img = np.expand_dims(img, axis=2)
        # some images have 4 channels
        if img.shape[2] > 3:
            img = img[:, :, :3]
        return img
    
    
    # ----------------------------------------
    # get uint8 image of size HxWxn_channles (RGB)
    # ----------------------------------------
    def imread_uint(path, n_channels=3):
        #  input: path
        # output: HxWx3(RGB or GGG), or HxWx1 (G)
        if n_channels == 1:
            img = cv2.imread(path, 0)  # cv2.IMREAD_GRAYSCALE
            img = np.expand_dims(img, axis=2)  # HxWx1
        elif n_channels == 3:
            img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # BGR or G
            if img.ndim == 2:
                img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)  # GGG
            else:
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB
        return img
    
    
    def imsave(img, img_path):
        if img.ndim == 3:
            img = img[:, :, [2, 1, 0]]
        cv2.imwrite(img_path, img)
    
    
    '''
    # =======================================
    # numpy(single) <--->  numpy(unit)
    # numpy(single) <--->  tensor
    # numpy(unit)   <--->  tensor
    # =======================================
    '''
    
    
    # --------------------------------
    # numpy(single) <--->  numpy(unit)
    # --------------------------------
    
    
    def uint2single(img):
    
        return np.float32(img/255.)
    
    def unit2single(img):
    
        return np.float32(img/255.)
    
    def single2uint(img):
    
        return np.uint8((img.clip(0, 1)*255.).round())
    
    
    def unit162single(img):
    
        return np.float32(img/65535.)
    
    
    def single2uint16(img):
    
        return np.uint8((img.clip(0, 1)*65535.).round())
    
    
    # --------------------------------
    # numpy(unit) <--->  tensor
    # uint (HxWxn_channels (RGB) or G)
    # --------------------------------
    
    
    # convert uint (HxWxn_channels) to 4-dimensional torch tensor
    def uint2tensor4(img):
        if img.ndim == 2:
            img = np.expand_dims(img, axis=2)
        return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
    
    
    # convert uint (HxWxn_channels) to 3-dimensional torch tensor
    def uint2tensor3(img):
        if img.ndim == 2:
            img = np.expand_dims(img, axis=2)
        return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
    
    
    # convert torch tensor to uint
    def tensor2uint(img):
        img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
        if img.ndim == 3:
            img = np.transpose(img, (1, 2, 0))
        return np.uint8((img*255.0).round())
    
    
    # --------------------------------
    # numpy(single) <--->  tensor
    # single (HxWxn_channels (RGB) or G)
    # --------------------------------
    
    
    # convert single (HxWxn_channels) to 4-dimensional torch tensor
    def single2tensor4(img):
        return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
    
    
    def single2tensor5(img):
        return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
    
    
    def single42tensor4(img):
        return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
    
    # convert single (HxWxn_channels) to 3-dimensional torch tensor
    def single2tensor3(img):
        return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
    
    
    # convert torch tensor to single
    def tensor2single(img):
        img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
        if img.ndim == 3:
            img = np.transpose(img, (1, 2, 0))
    
        return img
    
    def tensor2single3(img):
        img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
        if img.ndim == 3:
            img = np.transpose(img, (1, 2, 0))
        elif img.ndim == 2:
            img = np.expand_dims(img, axis=2)
        return img
    
    
    # from skimage.io import imread, imsave
    def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
        '''
        Converts a torch Tensor into an image Numpy array of BGR channel order
        Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
        Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
        '''
        tensor = tensor.squeeze().float().cpu().clamp_(*min_max)  # squeeze first, then clamp
        tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])  # to range [0,1]
        n_dim = tensor.dim()
        if n_dim == 4:
            n_img = len(tensor)
            img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
            img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
        elif n_dim == 3:
            img_np = tensor.numpy()
            img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
        elif n_dim == 2:
            img_np = tensor.numpy()
        else:
            raise TypeError(
                'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
        if out_type == np.uint8:
            img_np = (img_np * 255.0).round()
            # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
        return img_np.astype(out_type)
    
    
    '''
    # =======================================
    # image processing process on numpy image
    # augment(img_list, hflip=True, rot=True):
    # =======================================
    '''
    
    
    def augment_img(img, mode=0):
        if mode == 0:
            return img
        elif mode == 1:
            return np.flipud(np.rot90(img))
        elif mode == 2:
            return np.flipud(img)
        elif mode == 3:
            return np.rot90(img, k=3)
        elif mode == 4:
            return np.flipud(np.rot90(img, k=2))
        elif mode == 5:
            return np.rot90(img)
        elif mode == 6:
            return np.rot90(img, k=2)
        elif mode == 7:
            return np.flipud(np.rot90(img, k=3))
    
    
    def augment_img_np3(img, mode=0):
        if mode == 0:
            return img
        elif mode == 1:
            return img.transpose(1, 0, 2)
        elif mode == 2:
            return img[::-1, :, :]
        elif mode == 3:
            img = img[::-1, :, :]
            img = img.transpose(1, 0, 2)
            return img
        elif mode == 4:
            return img[:, ::-1, :]
        elif mode == 5:
            img = img[:, ::-1, :]
            img = img.transpose(1, 0, 2)
            return img
        elif mode == 6:
            img = img[:, ::-1, :]
            img = img[::-1, :, :]
            return img
        elif mode == 7:
            img = img[:, ::-1, :]
            img = img[::-1, :, :]
            img = img.transpose(1, 0, 2)
            return img
    
    
    def augment_img_tensor(img, mode=0):
        img_size = img.size()
        img_np = img.data.cpu().numpy()
        if len(img_size) == 3:
            img_np = np.transpose(img_np, (1, 2, 0))
        elif len(img_size) == 4:
            img_np = np.transpose(img_np, (2, 3, 1, 0))
        img_np = augment_img(img_np, mode=mode)
        img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
        if len(img_size) == 3:
            img_tensor = img_tensor.permute(2, 0, 1)
        elif len(img_size) == 4:
            img_tensor = img_tensor.permute(3, 2, 0, 1)
    
        return img_tensor.type_as(img)
    
    
    def augment_imgs(img_list, hflip=True, rot=True):
        # horizontal flip OR rotate
        hflip = hflip and random.random() < 0.5
        vflip = rot and random.random() < 0.5
        rot90 = rot and random.random() < 0.5
    
        def _augment(img):
            if hflip:
                img = img[:, ::-1, :]
            if vflip:
                img = img[::-1, :, :]
            if rot90:
                img = img.transpose(1, 0, 2)
            return img
    
        return [_augment(img) for img in img_list]
    
    
    '''
    # =======================================
    # image processing process on numpy image
    # channel_convert(in_c, tar_type, img_list):
    # rgb2ycbcr(img, only_y=True):
    # bgr2ycbcr(img, only_y=True):
    # ycbcr2rgb(img):
    # modcrop(img_in, scale):
    # =======================================
    '''
    
    
    def rgb2ycbcr(img, only_y=True):
        '''same as matlab rgb2ycbcr
        only_y: only return Y channel
        Input:
            uint8, [0, 255]
            float, [0, 1]
        '''
        in_img_type = img.dtype
        img.astype(np.float32)
        if in_img_type != np.uint8:
            img *= 255.
        # convert
        if only_y:
            rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
        else:
            rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
                                  [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
        if in_img_type == np.uint8:
            rlt = rlt.round()
        else:
            rlt /= 255.
        return rlt.astype(in_img_type)
    
    
    def ycbcr2rgb(img):
        '''same as matlab ycbcr2rgb
        Input:
            uint8, [0, 255]
            float, [0, 1]
        '''
        in_img_type = img.dtype
        img.astype(np.float32)
        if in_img_type != np.uint8:
            img *= 255.
        # convert
        rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
                              [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
        if in_img_type == np.uint8:
            rlt = rlt.round()
        else:
            rlt /= 255.
        return rlt.astype(in_img_type)
    
    
    def bgr2ycbcr(img, only_y=True):
        '''bgr version of rgb2ycbcr
        only_y: only return Y channel
        Input:
            uint8, [0, 255]
            float, [0, 1]
        '''
        in_img_type = img.dtype
        img.astype(np.float32)
        if in_img_type != np.uint8:
            img *= 255.
        # convert
        if only_y:
            rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
        else:
            rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
                                  [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
        if in_img_type == np.uint8:
            rlt = rlt.round()
        else:
            rlt /= 255.
        return rlt.astype(in_img_type)
    
    
    def modcrop(img_in, scale):
        # img_in: Numpy, HWC or HW
        img = np.copy(img_in)
        if img.ndim == 2:
            H, W = img.shape
            H_r, W_r = H % scale, W % scale
            img = img[:H - H_r, :W - W_r]
        elif img.ndim == 3:
            H, W, C = img.shape
            H_r, W_r = H % scale, W % scale
            img = img[:H - H_r, :W - W_r, :]
        else:
            raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
        return img
    
    
    def shave(img_in, border=0):
        # img_in: Numpy, HWC or HW
        img = np.copy(img_in)
        h, w = img.shape[:2]
        img = img[border:h-border, border:w-border]
        return img
    
    
    def channel_convert(in_c, tar_type, img_list):
        # conversion among BGR, gray and y
        if in_c == 3 and tar_type == 'gray':  # BGR to gray
            gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
            return [np.expand_dims(img, axis=2) for img in gray_list]
        elif in_c == 3 and tar_type == 'y':  # BGR to y
            y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
            return [np.expand_dims(img, axis=2) for img in y_list]
        elif in_c == 1 and tar_type == 'RGB':  # gray/y to BGR
            return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
        else:
            return img_list
    
    
    '''
    # =======================================
    # metric, PSNR and SSIM
    # =======================================
    '''
    
    
    # ----------
    # PSNR
    # ----------
    def calculate_psnr(img1, img2, border=0):
        # img1 and img2 have range [0, 255]
        if not img1.shape == img2.shape:
            raise ValueError('Input images must have the same dimensions.')
        h, w = img1.shape[:2]
        img1 = img1[border:h-border, border:w-border]
        img2 = img2[border:h-border, border:w-border]
    
        img1 = img1.astype(np.float64)
        img2 = img2.astype(np.float64)
        mse = np.mean((img1 - img2)**2)
        if mse == 0:
            return float('inf')
        return 20 * math.log10(255.0 / math.sqrt(mse))
    
    
    # ----------
    # SSIM
    # ----------
    def calculate_ssim(img1, img2, border=0):
        '''calculate SSIM
        the same outputs as MATLAB's
        img1, img2: [0, 255]
        '''
        if not img1.shape == img2.shape:
            raise ValueError('Input images must have the same dimensions.')
        h, w = img1.shape[:2]
        img1 = img1[border:h-border, border:w-border]
        img2 = img2[border:h-border, border:w-border]
    
        if img1.ndim == 2:
            return ssim(img1, img2)
        elif img1.ndim == 3:
            if img1.shape[2] == 3:
                ssims = []
                for i in range(3):
                    ssims.append(ssim(img1, img2))
                return np.array(ssims).mean()
            elif img1.shape[2] == 1:
                return ssim(np.squeeze(img1), np.squeeze(img2))
        else:
            raise ValueError('Wrong input image dimensions.')
    
    
    def ssim(img1, img2):
        C1 = (0.01 * 255)**2
        C2 = (0.03 * 255)**2
    
        img1 = img1.astype(np.float64)
        img2 = img2.astype(np.float64)
        kernel = cv2.getGaussianKernel(11, 1.5)
        window = np.outer(kernel, kernel.transpose())
    
        mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
        mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
        mu1_sq = mu1**2
        mu2_sq = mu2**2
        mu1_mu2 = mu1 * mu2
        sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
        sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
        sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
    
        ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                                                                (sigma1_sq + sigma2_sq + C2))
        return ssim_map.mean()
    
    
    '''
    # =======================================
    # pytorch version of matlab imresize
    # =======================================
    '''
    
    
    # matlab 'imresize' function, now only support 'bicubic'
    def cubic(x):
        absx = torch.abs(x)
        absx2 = absx**2
        absx3 = absx**3
        return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
            (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
    
    
    def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
        if (scale < 1) and (antialiasing):
            # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
            kernel_width = kernel_width / scale
    
        # Output-space coordinates
        x = torch.linspace(1, out_length, out_length)
    
        # Input-space coordinates. Calculate the inverse mapping such that 0.5
        # in output space maps to 0.5 in input space, and 0.5+scale in output
        # space maps to 1.5 in input space.
        u = x / scale + 0.5 * (1 - 1 / scale)
    
        # What is the left-most pixel that can be involved in the computation?
        left = torch.floor(u - kernel_width / 2)
    
        # What is the maximum number of pixels that can be involved in the
        # computation?  Note: it's OK to use an extra pixel here; if the
        # corresponding weights are all zero, it will be eliminated at the end
        # of this function.
        P = math.ceil(kernel_width) + 2
    
        # The indices of the input pixels involved in computing the k-th output
        # pixel are in row k of the indices matrix.
        indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
            1, P).expand(out_length, P)
    
        # The weights used to compute the k-th output pixel are in row k of the
        # weights matrix.
        distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
        # apply cubic kernel
        if (scale < 1) and (antialiasing):
            weights = scale * cubic(distance_to_center * scale)
        else:
            weights = cubic(distance_to_center)
        # Normalize the weights matrix so that each row sums to 1.
        weights_sum = torch.sum(weights, 1).view(out_length, 1)
        weights = weights / weights_sum.expand(out_length, P)
    
        # If a column in weights is all zero, get rid of it. only consider the first and last column.
        weights_zero_tmp = torch.sum((weights == 0), 0)
        if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
            indices = indices.narrow(1, 1, P - 2)
            weights = weights.narrow(1, 1, P - 2)
        if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
            indices = indices.narrow(1, 0, P - 2)
            weights = weights.narrow(1, 0, P - 2)
        weights = weights.contiguous()
        indices = indices.contiguous()
        sym_len_s = -indices.min() + 1
        sym_len_e = indices.max() - in_length
        indices = indices + sym_len_s - 1
        return weights, indices, int(sym_len_s), int(sym_len_e)
    
    
    # --------------------------------
    # imresize for tensor image
    # --------------------------------
    def imresize(img, scale, antialiasing=True):
        # Now the scale should be the same for H and W
        # input: img: pytorch tensor, CHW or HW [0,1]
        # output: CHW or HW [0,1] w/o round
        need_squeeze = True if img.dim() == 2 else False
        if need_squeeze:
            img.unsqueeze_(0)
        in_C, in_H, in_W = img.size()
        out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
        kernel_width = 4
        kernel = 'cubic'
    
        # Return the desired dimension order for performing the resize.  The
        # strategy is to perform the resize first along the dimension with the
        # smallest scale factor.
        # Now we do not support this.
    
        # get weights and indices
        weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
            in_H, out_H, scale, kernel, kernel_width, antialiasing)
        weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
            in_W, out_W, scale, kernel, kernel_width, antialiasing)
        # process H dimension
        # symmetric copying
        img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
        img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
    
        sym_patch = img[:, :sym_len_Hs, :]
        inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
        sym_patch_inv = sym_patch.index_select(1, inv_idx)
        img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
    
        sym_patch = img[:, -sym_len_He:, :]
        inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
        sym_patch_inv = sym_patch.index_select(1, inv_idx)
        img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
    
        out_1 = torch.FloatTensor(in_C, out_H, in_W)
        kernel_width = weights_H.size(1)
        for i in range(out_H):
            idx = int(indices_H[i][0])
            for j in range(out_C):
                out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
    
        # process W dimension
        # symmetric copying
        out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
        out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
    
        sym_patch = out_1[:, :, :sym_len_Ws]
        inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
        sym_patch_inv = sym_patch.index_select(2, inv_idx)
        out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
    
        sym_patch = out_1[:, :, -sym_len_We:]
        inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
        sym_patch_inv = sym_patch.index_select(2, inv_idx)
        out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
    
        out_2 = torch.FloatTensor(in_C, out_H, out_W)
        kernel_width = weights_W.size(1)
        for i in range(out_W):
            idx = int(indices_W[i][0])
            for j in range(out_C):
                out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
        if need_squeeze:
            out_2.squeeze_()
        return out_2
    
    
    # --------------------------------
    # imresize for numpy image
    # --------------------------------
    def imresize_np(img, scale, antialiasing=True):
        # Now the scale should be the same for H and W
        # input: img: Numpy, HWC or HW [0,1]
        # output: HWC or HW [0,1] w/o round
        img = torch.from_numpy(img)
        need_squeeze = True if img.dim() == 2 else False
        if need_squeeze:
            img.unsqueeze_(2)
    
        in_H, in_W, in_C = img.size()
        out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
        kernel_width = 4
        kernel = 'cubic'
    
        # Return the desired dimension order for performing the resize.  The
        # strategy is to perform the resize first along the dimension with the
        # smallest scale factor.
        # Now we do not support this.
    
        # get weights and indices
        weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
            in_H, out_H, scale, kernel, kernel_width, antialiasing)
        weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
            in_W, out_W, scale, kernel, kernel_width, antialiasing)
        # process H dimension
        # symmetric copying
        img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
        img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
    
        sym_patch = img[:sym_len_Hs, :, :]
        inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
        sym_patch_inv = sym_patch.index_select(0, inv_idx)
        img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
    
        sym_patch = img[-sym_len_He:, :, :]
        inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
        sym_patch_inv = sym_patch.index_select(0, inv_idx)
        img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
    
        out_1 = torch.FloatTensor(out_H, in_W, in_C)
        kernel_width = weights_H.size(1)
        for i in range(out_H):
            idx = int(indices_H[i][0])
            for j in range(out_C):
                out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
    
        # process W dimension
        # symmetric copying
        out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
        out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
    
        sym_patch = out_1[:, :sym_len_Ws, :]
        inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
        sym_patch_inv = sym_patch.index_select(1, inv_idx)
        out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
    
        sym_patch = out_1[:, -sym_len_We:, :]
        inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
        sym_patch_inv = sym_patch.index_select(1, inv_idx)
        out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
    
        out_2 = torch.FloatTensor(out_H, out_W, in_C)
        kernel_width = weights_W.size(1)
        for i in range(out_W):
            idx = int(indices_W[i][0])
            for j in range(out_C):
                out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
        if need_squeeze:
            out_2.squeeze_()
    
        return out_2.numpy()
    
    
    if __name__ == '__main__':
        img = imread_uint('test.bmp',3)
    
    

    此次博文,就到这里啦,感谢各位的查阅

    🚀🚀目前掘金平台已经创作的经典博文如下🚀🚀


    计算机视觉领域、经典博文

    AI 学习、深度学习环境搭建 : 一文读懂


    🚀🚀 墨理学AI


  • 🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
  • ❤️ 如果文章对你有帮助、点赞、评论鼓励博主的每一分认真创作
  • 765_blue.jpg