AlexNet网络详解

1,617 阅读5分钟

1 模型介绍

2012年,AlexKrizhevskyAlex KrizhevskyIlyaSutskeverIlya Sutskever在多伦多大学Geoff Hinton的实验室设计出了一个深层的卷积神经网络AlexNet,夺得了2012年ImageNet LSVRC的冠军,且准确率远超第二名(top5错误率为15.3%,第二名为26.2%),引起了很大的轰动。AlexNet可以说是具有历史意义的一个网络结构。

2 模型结构

1.png 从图中可以看出,AlexNet网络结构分为上下两层,分别对应两个GPU的操作过程,除了中间某些层(C3C_3卷积层和F68F_{6-8}全连接层会有GPU间的交互)外,其他层两个GPU分别计算结果。除去局部响应规范化操作(Local Responsible Normalization, LRN),AlexNet一共包含8层,前5层由卷积层(其中卷积层1、2、5后含有下采样层)组成,而剩下的3层为全连接层。最后一层全连接层的输出作为softmaxsoftmax的输入,得到1000个图像分类标签对应的概率值。除了GPU并行结构的设计,AlexNet网络结构与LeNet十分相似,其网络的参数配置如下表所示。

Layer NameKernel SizeKernel NumStridePaddingInput SizeOutput Size
Conv111×1111\times1148(×2GPU)48(\times2_{GPU})44[1,2][1,2]224×224×3224\times224\times355×55×9655\times55\times96
Maxpool13×33\times3//220055×55×9655\times55\times9627×27×9627\times27\times96
Conv25×55\times5128(×2GPU)128(\times2_{GPU})11[2,2][2,2]27×27×9627\times27\times9627×27×25627\times27\times256
Maxpool23×33\times3//220027×27×25627\times27\times25613×13×25613\times13\times256
Conv33×33\times3192(×2GPU)192(\times2_{GPU})11[1,1][1,1]13×13×25613\times13\times25613×13×38413\times13\times384
Conv43×33\times3192(×2GPU)192(\times2_{GPU})11[1,1][1,1]13×13×38413\times13\times38413×13×38413\times13\times384
Conv53×33\times3128(×2GPU)128(\times2_{GPU})11[1,1][1,1]13×13×38413\times13\times38413×13×25613\times13\times256
Maxpool33×33\times3//220013×13×25613\times13\times2566×6×2566\times6\times256
FC120482048//////6×6×2566\times6\times2564096
FC220482048//////40964096
FC310001000//////40961000

为了简化网络结构,将作者原论文中的在两个GPU上的并行结构合并,接下来我们对AlexNet的每一层作详细的分析。

1、Conv1: kernels:48×2=96;kernel_size:11;padding:[1, 2] ;stride:4

卷积层1输入的尺寸为224×224,卷积核的数量为96,论文中两片GPU分别计算48个核; 卷积核的大小为 11 × 11 × 3 ;卷积核步距stride = 4;padding=[1, 2]表示在原输入图像上左侧补一列0,右侧2列0,上侧一行0,下侧2行0。

输出feature map的尺寸为:N = (W − F + 2P ) / S + 1 = [ 224 - 11 + (1 + 2)] / 4 + 1 = 55

2、Maxpool1: kernel_size:3;pading:0;stride:2

卷积层Conv1之后接着进行了局部响应规范化操作(Local Response Normalized),将规范化的结果送入大小为3×33\times3,步距为2的池化核进行最大池化下采样。

输出的feature map尺寸为:N = (W − F + 2P ) / S + 1 = (55 - 3) / 2 + 1 = 27

3、Conv2: kernels:128×2=256; kernel_size:5; padding: [2, 2]; stride:1

卷积层2使用256个卷积核做常规的卷积操作

输出的feature map尺寸为:N = (W − F + 2P ) / S + 1 = (27 - 5 + 4) / 1 + 1 = 27

4、Maxpool2: kernel_size:3; pading:0; stride:2

与下采样层Conv2类似,在上述卷积层之后接着进行了局部响应规范化操作,然后将结果送入大小为3×33\times3,步距为2的池化核进行最大池化下采样。

输出的feature map尺寸为:N = (W − F + 2P ) / S + 1 = (27 - 3) / 2 + 1 = 13

5、Conv3: kernels:192×2=384; kernel_size:3; padding: [1, 1]; stride:1

与Conv1和Conv2不同,Conv3、Conv3、Conv3后均不接局部响应归一化LRN层

输出的feature map尺寸为:N = (W − F + 2P ) / S + 1 = (13 - 3 + 2) / 1 + 1 = 13

6、Conv4: kernels:192×2=384; kernel_size:3; padding: [1, 1]; stride:1

输出的feature map尺寸为:N = (W − F + 2P ) / S + 1 = (13 - 3 + 2) / 1 + 1 = 13

7、Conv5: kernels:128×2=256; kernel_size:3; padding: [1, 1]; stride:1

输出的feature map尺寸为:N = (W − F + 2P ) / S + 1 = (13 - 3 + 2) / 1 + 1 = 13

8、Maxpool3: kernel_size:3 padding: 0 stride:2

输出的feature map尺寸为:N = (W − F + 2P ) / S + 1 = (13 - 3) / 2 + 1 = 6

9、全连接层FC1、FC2、FC3

FC1和FC2分别有4096个神经元,FC3输出softmax为1000个(ImageNet数据集分类类别)。

3 模型创新

1、使用ReLU作为激活函数代替了传统的Sigmoid和Tanh

ReLU为非饱和函数,论文中验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。

2、在多个GPU上进行模型的训练,不但可以提高模型的训练速度,还能提升数据的使用规模

3、使用LRN对局部的特征进行归一化

结果作为ReLU激活函数的输入能有效降低错误率

4、使用随机丢弃技术(dropout)选择性地忽略训练中的单个神经元

在AlexNet的最后几个全连接层中使用了Dropout来避免模型的过拟合

5、重叠最大池化(overlapping max pooling)

即池化范围z与步长s存在关系z>sz>s(如最大池化下采样中核大小为3×33\times3,步距为2),避免平均池化(average pooling)的平均效应

4 Pytorch模型搭建代码

注:由于LRN层对训练结果影响不大,故代码中去除了LRN层

import torch
import torch.nn as nn


class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2),  # [None, 3, 224, 224] --> [None, 96, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),  # [None, 96, 55, 55] --> [None, 96, 27, 27]
            nn.Conv2d(96, 256, kernel_size=5, padding=2),  # [None, 96, 27, 27] --> [None, 256, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),  # [None, 256, 27, 27] --> [None, 256, 13, 13]
            nn.Conv2d(256, 384, kernel_size=3, padding=1),  # [None, 256, 27, 27] --> [None, 384, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 384, kernel_size=3, padding=1),  # [None, 384, 13, 13] --> [None, 384, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),  # [None, 384, 13, 13] --> [None, 256, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2)  # [None, 256, 13, 13] --> [None, 256, 6, 6]
        )

        self.classifier = nn.Sequential(
            nn.Dropout(p=0.2),
            nn.Linear(256 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.2),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes)
        )

    def forward(self, inputs):
        x = self.features(inputs)
        x = torch.flatten(x, start_dim=1)
        outputs = self.classifier(x)
        return outputs