- 👏作者简介:大家好,我是爱敲代码的小黄,独角兽企业的Java开发工程师
- 📝个人公众号:爱敲代码的小黄
- 📕系列专栏:Java设计模式、数据结构和算法
- 📧如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步👀
- 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
- 🍂博主正在努力完成2022计划中:以梦为马,扬帆起航,2022追梦人
一、引言
最近小黄的朋友去一家业内有名的游戏公司(有兴趣的读者可以猜猜)面试,出了一道经典的题目:目前游戏需进行一项签到抽奖的活动,怎么保证每个人抽到奖品的概率都是相等的,保证最终中奖的人数为10人
小黄的朋友计算出 签到的总人数
,使用随机函数 Random
获取 中奖的人
,依次类推,最终求出 10个中奖的人
但面试官并不满意该做法,提出了几个条件:
- 签到的人数
N
很大且不可知 - 随机选取
10
个人,每个人被选中的概率为10/N
- 时间复杂度为
O(N)
小黄朋友瞬间有点懵了,不知所措,聊了聊其他的,潦草的结束了这场面试
朋友找小黄聊了聊,最终发现面试官想考察的是:蓄水池抽样算法(Reservoir Sampling)
有精力的读者可以事先看一下这几道 模板 题:
二、蓄水池抽样算法
由人数 N
不可知、每个人选中的概率为 10/N
、时间复杂度为 O(N)
这几个条件我们可以得知:我们的算法肯定是遍历一次,每个人选中的概率随着签到人数的增加,逐渐变小,但每个人选中的概率一样
比如 num
代表我们逐渐增长的人数:for(int num = 1; num <= 100; num++)
- 当
num = 10
时,我们每个人数选取的概率为10/10
- 当
num = 50
时,我们每个人数选取的概率为10/50
- 当
num = 100
时,我们每个人数选取的概率为10/100
我们可以看到,随着人数动态的增加,我们的概率也变的不同,如果我们单纯的使用上面 Random
的算法,对于动态的调整我们没有办法
下面,我们一起来领略一下 蓄水池抽样算法
的奥妙所在
1. 思路
我们总体的水池如下:
当前的 num <= 10
时,我们直接让其入水池
当前的 num > 10
时我们在 1~num
进行随机
- 如果随机的结果小于等于10,则替换该水池
- 如果随机的结果大于10,则不做操作
假设当前的值为 12
,我们使用 random.nextInt(12) + 1
得到 1~12
的随机值
-
假如随机值为
5
,则12
将替换池中下标为5
的数 -
假如随机值为
11
,则不做操作
最终蓄水池中的数字即为签到中奖的人数
到这一步,我相信 80%
的人会懵,没关系,我也是这样过来的
让我们一起来下面的证明
2. 证明
我们假设当前的 num
为 30
,那么每一个值被选中的概率为 10/30
首先,我们证明 3
的概率:
- 对于
3
来说,入水池概率:100%100
,出水池的概率 = 被替换的概率(也就是num > 10
)11
能够替换3
的概率:(10 / 11) * (1 / 10) = (1 / 11)
(替换水池的概率 * 随机水池为3
的概率)12
能够替换3
的概率:(10 / 12) * (1 / 10) = (1 / 12)
- ....
- 我们反过来想一下,那么我们
3
不出水池的概率为多少呢?(3)进水池的概率 * (3)不出水池的概率
1 * (10 / 11) * (11 / 12) * (12 / 13) * ... (29 / 30) = (10 / 30)
- 符合我们最后的结果
最后,我们证明 17
的概率:
- 对于
17
来说,入水池概率:10 / 17
,出水池的概率 = 被替换的概率(也就是num > 17
)18
能够替换17
的概率:(10 / 18) * (1 / 10) = (1 / 18)
(替换水池的概率 * 随机水池为17
的概率)19
能够替换17
的概率:(10 / 19) * (1 / 10) = (1 / 19)
- ....
- 我们反过来想一想,那么我们
17
不出水池的概率为多少呢?(17)进水池的概率 * (17)不出水池的概率
(10 / 17) * (17 / 18) * (18 / 19) * (19 / 20) * ... (29 / 30) = (10 / 30)
- 符合我们最后的结果
3. 代码
public class _蓄水池算法 {
static Random random = new Random();
public static void main(String[] args) {
// 10000组测试
int test = 10000;
// 人数为100人
int dataBase = 100;
// 记录每次出现的频率
int[] count = new int[101];
for (int i = 0; i < test; i++) {
// 蓄水池
int[] bag = new int[10];
// 蓄水池下标
int bagIndex = 0;
for (int num = 1; num <= dataBase; num++) {
// 如果小于10,直接入池
if (num <= 10) {
bag[bagIndex++] = num;
} else {
// 如果大于10,则以 10 / i 的概率观察是否可以入池
// 如果小于等于10,则证明可以入池
if (getNum(num) <= 10) {
// 随机淘汰池里面的一个数
int index = random.nextInt(10);
bag[index] = num;
}
}
}
// 记录当前出现的频率
for (int num : bag) {
count[num]++;
}
}
// 输出、验证我们的随机率
for (int i = 0; i < count.length; i++) {
System.out.println(count[i]);
}
}
// 返回[1,i]的数
public static int getNum(int i) {
return random.nextInt(i) + 1;
}
}
复制代码
测试结果:我们发现出现的频率基本相等
999
1009
967
1050
981
996
996
950
971
998
1005
1032
974
982
1007
1029
1026
1045
复制代码
三、例题练习
俗话说的好,一看就会,一做就废,验证你成果的时候到了
力扣模板题目:
基本就是模板题,直接套上面的公式即可
容我在这里打一个小小的广告,关注公众号:爱敲代码的小黄
,回复:算法源码,不仅可获得蓄水池还有其他各种类型的算法源码。
你的关注可能使我距离成功的顶峰更近一步,一起努力学习,努力成长。
四、总结
基本蓄水池抽样算法到这里就结束了
在工程上主要应用于 抽奖系统
,这里可能有人会疑问,我直接等抽奖完毕,然后计算总人数,不也能达到一样的效果嘛。从效果来看,没什么区别性。
但是,工程和理想最大的区别就是:工程可能由于一系列的外在因素影响正常流程的运行
。
比如,原本我计划在 2022.1.8~2022.1.10
进行为期2天的抽奖,开奖时间设置在 2022.1.11
,如果服务器宕机,导致数据丢失,怎么保证最终的总人数。而我们的 蓄水池抽样算法
则是会一直更新中奖的人数。
当你遇到这类面试题时,直接三步走:原理 -> 证明 -> 代码
,一波带走面试官
这期的蓄水池算法到这里就结束了,下一期一定会讲述计算机网络相关知识,提前透漏一下,计算机网络的八股题主也颇有研究。
我是一名独角兽企业的Java开发工程师,希望可以点个关注呀,有问题可以留言或者私信加我微信,我们下期再见!