「这是我参与11月更文挑战的第19天,活动详情查看:2021最后一次更文挑战」
题目
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:
最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6] 解释:需要合并 [1,2,3] 和 [2,5,6] 。 合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0 输出:[1] 解释:需要合并 [1] 和 [] 。 合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1 输出:[1] 解释:需要合并的数组是 [] 和 [1] 。 合并结果是 [1] 。 注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
提示:
- nums1.length == m + n
- nums2.length == n
- 0 <= m, n <= 200
- 1 <= m + n <= 200
- -109 <= nums1[i], nums2[j] <= 109
进阶: 你可以设计实现一个时间复杂度为 O(m + n) 的算法解决此问题吗?
解题思路
方法一:运用数组的属性
/**
* @param {number[]} nums1
* @param {number} m
* @param {number[]} nums2
* @param {number} n
* @return {void} Do not return anything, modify nums1 in-place instead.
*/
var merge = function(nums1, m, nums2, n) {
return nums1.splice(0, m).concat(nums2.splice(0, n)).sort();
};
上面是我看到题目的时候想当然的解法,我还特意在控制台打印了一下结果如下:
但是勒,我提交代码发现第一个用例就没走过。仔细看题目,发现要求的是合并后数组不应由函数返回,而是存储在数组 nums1 中。于是又了下面的解法
方法二:直接合并后排序
var merge = function(nums1, m, nums2, n) {
nums1.splice(m, nums1.length - m, ...nums2);
nums1.sort((a, b) => a - b);
};
-
时间复杂度:O((m+n)log(m+n))。
排序序列长度为 m+n,套用快速排序的时间复杂度即可,平均情况为 O((m+n)log(m+n))。
-
空间复杂度:O(log(m+n))。
排序序列长度为 m+n,套用快速排序的空间复杂度即可,平均情况为 O(log(m+n))。
方法三:双指针
var merge = function(nums1, m, nums2, n) {
let p1 = 0, p2 = 0;
const sorted = new Array(m + n).fill(0);
var cur;
while (p1 < m || p2 < n) {
if (p1 === m) {
cur = nums2[p2++];
} else if (p2 === n) {
cur = nums1[p1++];
} else if (nums1[p1] < nums2[p2]) {
cur = nums1[p1++];
} else {
cur = nums2[p2++];
}
sorted[p1 + p2 - 1] = cur;
}
for (let i = 0; i != m + n; ++i) {
nums1[i] = sorted[i];
}
};
-
时间复杂度:O(m+n)。
指针移动单调递增,最多移动 m+n 次,因此时间复杂度为 O(m+n)。
-
空间复杂度:O(m+n)。
需要建立长度为 m+n 的中间数组 sorted。
结束语
这里是小葵🌻,只要把心朝着太阳的地方,就会有温暖~
让我们一起来攻克算法难关吧!!