本文已参与「掘力星计划」,赢取创作大礼包,挑战创作激励金。
小知识,大挑战!本文正在参与“程序员必备小知识”创作活动。
其他设计模式介绍
创建型:
工厂方法
抽象工厂
原型
结构型:
适配器
桥接模式
组合模式
装饰模式
外观模式
享元模式
代理模式
行为型:
职责链
命令
解释器
迭代器
中介者
备忘录
状态模式
策略模式
模板方法
访问者
定义
给分析对象定义一个语言,并定义该语言的文法表示,再设计一个解析器来解释语言中的句子。也就是说,用编译语言的方式来分析应用中的实例。这种模式实现了文法表达式处理的接口,该接口解释一个特定的上下文。\
这里提到的文法和句子的概念同编译原理中的描述相同,“文法”指语言的语法规则,而“句子”是语言集中的元素。例如,汉语中的句子有很多,“我是中国人”是其中的一个句子,可以用一棵语法树来直观地描述语言中的句子。\
优点
- 扩展性好。由于在解释器模式中使用类来表示语言的文法规则,因此可以通过继承等机制来改变或扩展文法。
- 容易实现。在语法树中的每个表达式节点类都是相似的,所以实现其文法较为容易。
缺点
- 执行效率较低。解释器模式中通常使用大量的循环和递归调用,当要解释的句子较复杂时,其运行速度很慢,且代码的调试过程也比较麻烦。
- 会引起类膨胀。解释器模式中的每条规则至少需要定义一个类,当包含的文法规则很多时,类的个数将急剧增加,导致系统难以管理与维护。
- 可应用的场景比较少。在软件开发中,需要定义语言文法的应用实例非常少,所以这种模式很少被使用到。
UML
模式的实现
解释器模式实现的关键是定义文法规则、设计终结符类与非终结符类、画出结构图,必要时构建语法树,其代码结构如下:
package net.biancheng.c.interpreter;
//抽象表达式类
interface AbstractExpression {
public void interpret(String info); //解释方法
}
//终结符表达式类
class TerminalExpression implements AbstractExpression {
public void interpret(String info) {
//对终结符表达式的处理
}
}
//非终结符表达式类
class NonterminalExpression implements AbstractExpression {
private AbstractExpression exp1;
private AbstractExpression exp2;
public void interpret(String info) {
//非对终结符表达式的处理
}
}
//环境类
class Context {
private AbstractExpression exp;
public Context() {
//数据初始化
}
public void operation(String info) {
//调用相关表达式类的解释方法
}
}
模式的应用场景
前面介绍了解释器模式的结构与特点,下面分析它的应用场景。
- 当语言的文法较为简单,且执行效率不是关键问题时。
- 当问题重复出现,且可以用一种简单的语言来进行表达时。
- 当一个语言需要解释执行,并且语言中的句子可以表示为一个抽象语法树的时候,如 XML 文档解释。
\