阅读 115

【算法】 时间复杂度,空间复杂度

一、时间复杂度

1) 常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1),如:

int i = 1;
int j = 2;
++i;
j++;
int m = i + j;
复制代码

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

2) 线性阶O(n)
for(i=1; i<=n; ++i)
{
   j = i;
   j++;
}
复制代码

这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。

3) 对数阶O(logN)

image.png

image.png

int i = 1;
while(i<n)
{
    i = i * 2;
}
复制代码

从上面代码可以看到,在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。我们试着求解一下,假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2^n

也就是说当循环 log2^n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(logn)

4) 线性对数阶O(nlogN)

线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)。

就拿上面的代码加一点修改来举例:

for(m=1; m<n; m++)
{
    i = 1;
    while(i<n)
    {
        i = i * 2;
    }
}
复制代码
5) 平方阶O(n²)

平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) 了。 举例:

for(x=1; i<=n; x++)
{
   for(i=1; i<=n; i++)
    {
       j = i;
       j++;
    }
}
复制代码

这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n*n),即 O(n²)
如果将其中一层循环的n改成m,即:


for(x=1; i<=m; x++)
{
   for(i=1; i<=n; i++)
    {
       j = i;
       j++;
    }
}
复制代码

那它的时间复杂度就变成了 O(m*n)

6) 立方阶O(n³)K次方阶O(n^k)

参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似。

参考

总结

文章分类
前端
文章标签