摘要:写对二分查找不应该靠记忆,而是需要深刻理解二分查找的基本思想,然后仔细分析题意,认真分类讨论,才不会出错。
思路分析:
-
不可以找到
target以后,然后向两边扩散(线性查找),这样的话时间复杂度为 ,这里 是输入数组的长度; -
应该使用两次二分查找,先找
target第一次出现的位置,再找target最后一次出现的位置,注意分类讨论,并且把分类讨论的结果合并。
参考代码:
public class Solution {
public int[] searchRange(int[] nums, int target) {
int len = nums.length;
if (len == 0) {
return new int[]{-1, -1};
}
int firstPosition = findFirstPosition(nums, target);
if (firstPosition == -1) {
return new int[]{-1, -1};
}
int lastPosition = findLastPosition(nums, target);
return new int[]{firstPosition, lastPosition};
}
private int findFirstPosition(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while (left < right) {
int mid = left + (right - left) / 2;
// 小于一定不是解
if (nums[mid] < target) {
// 下一轮搜索区间是 [mid + 1..right]
left = mid + 1;
} else {
// nums[mid] > target,下一轮搜索区间是 [left..mid]
right = mid;
}
}
if (nums[left] == target) {
return left;
}
return -1;
}
private int findLastPosition(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while (left < right) {
int mid = left + (right - left + 1) / 2;
if (nums[mid] > target) {
// 下一轮搜索区间是 [left..mid - 1]
right = mid - 1;
} else
// 下一轮搜索区间是 [mid..right]
left = mid;
}
}
return left;
}
}
参考代码的补充说明:
findFirstPosition(),分成三种情况:下面的描述可能有一点啰嗦,但是很多时候问题并不难,我们需要仔细一点就不难做对。
情况 ① :当 nums[mid] < target 时
mid一定不是target第一次出现的位置;- 由于数组有序,
mid的左边一定比nums[mid]还小,因此mid的左边一定不是target第一次出现的位置; mid的右边比nums[mid]还大,因此mid的右边有可能存在target第一次出现的位置。
因此下一轮搜索区间是 [mid + 1..right],此时设置 left = mid + 1;
情况 ② :当 nums[mid] == target 时
mid有可能是target第一次出现的位置;mid的左边也有可能是target第一次出现的位置;mid的右边一定不是target第一次出现的位置。
因此下一轮搜索区间在 [left..mid],此时设置 right = mid。
情况 ③ :当 nums[mid] > target 时
mid一定不是target第一次出现的位置;mid的右边也一定不是target第一次出现的位置;mid的左边有可能是target第一次出现的位置,因此下一轮搜索区间在[left..mid - 1],此时设置right = mid - 1。
重点在这里:把情况 ② 和情况 ③ 合并,即当 nums[mid] >= target 的时候,下一轮搜索区间是 [left..mid],此时设置 right = mid - 1。这样做是因为:只有当区间分割是 [left..mid] 和 [mid + 1..right] 的时候,while(left < right) 退出循环以后才有 left == right 成立。
findLastPosition() 也可以类似分析,这里省略。
在本题解中,while(left < right) 只表示退出循环以后有 left == right 成立,不表示搜索区间为左闭右开区间,本题解以及我的其它题解中,对循环不变量的定义均为:在 nums[left..right] 中查找目标元素。
复杂度分析:
- 时间复杂度:,这里 是数组的长度,两个子问题都是二分查找,因此时间复杂度为对数级别;
- 空间复杂度:,只使用了常数个数的辅助变量。
欢迎大家关注我的公众号「算法不好玩」,B 站搜索「liweiwei1419」,我讲解的算法知识特别好懂。