【Elasticsearch】ES索引过程

·  阅读 624

一、分布式文档存储

1.1 路由一个文档到分片中

当索引一个文档的时候,文档会被存储到一个主分片中。 Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片 1 还是分片 2 中呢?

首先这肯定不会是随机的,否则将来要获取文档的时候我们就不知道从何处寻找了。实际上,这个过程是根据下面这个公式决定的:

shard = hash(routing) % number_of_primary_shards
复制代码

routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。 routing 通过 hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)后得到 余数 。这个分布在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求的文档所在分片的位置。

这就解释了为什么我们要在创建索引的时候就确定好主分片的数量 并且永远不会改变这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。

所有的文档 API( get 、 index 、 delete 、 bulk 、 update 以及 mget )都接受一个叫做 routing 的路由参数 ,通过这个参数我们可以自定义文档到分片的映射。一个自定义的路由参数可以用来确保所有相关的文档——例如所有属于同一个用户的文档——都被存储到同一个分片中。我们也会在扩容设计这一章中详细讨论为什么会有这样一种需求。

1.2 主分片和副本分片如何交互

为了说明目的, 我们 假设有一个集群由三个节点组成。 它包含一个叫 blogs 的索引,有两个主分片,每个主分片有两个副本分片。相同分片的副本不会放在同一节点,所以我们的集群看起来像下面这样: image.png 我们可以发送请求到集群中的任一节点。 每个节点都有能力处理任意请求。 每个节点都知道集群中任一文档位置,所以可以直接将请求转发到需要的节点上。 在下面的例子中,将所有的请求发送到 Node 1 ,我们将其称为 协调节点(coordinating node)  。

1.2.1 新建、索引和删除文档

新建、索引和删除 请求都是  操作, 必须在主分片上面完成之后才能被复制到相关的副本分片,如下图所示 image.png
以下是在主副分片和任何副本分片上面 成功新建,索引和删除文档所需要的步骤顺序:

  1. 客户端向 Node 1 发送新建、索引或者删除请求。
  2. 节点使用文档的 _id 确定文档属于分片 0 。请求会被转发到 Node 3,因为分片 0 的主分片目前被分配在 Node 3 上。
  3. Node 3 在主分片上面执行请求。如果成功了,它将请求并行转发到 Node 1 和 Node 2 的副本分片上。一旦所有的副本分片都报告成功, Node 3 将向协调节点报告成功,协调节点向客户端报告成功。

在客户端收到成功响应时,文档变更已经在主分片和所有副本分片执行完成,变更是安全的。

有一些可选的请求参数允许您影响这个过程,可能以数据安全为代价提升性能。这些选项很少使用,因为Elasticsearch已经很快,但是为了完整起见,在这里阐述如下:

  • consistency
    consistency,即一致性。在默认设置下,即使仅仅是在试图执行一个_写_操作之前,主分片都会要求 必须要有 规定数量(quorum) (或者换种说法,也即必须要有大多数)的分片副本处于活跃可用状态,才会去执行_写_操作(其中分片副本可以是主分片或者副本分片)。这是为了避免在发生网络分区故障(network partition)的时候进行_写_操作,进而导致数据不一致。_规定数量_即:

    int( (primary + number_of_replicas) / 2 ) + 1
    复制代码

    consistency 参数的值可以设为 one (只要主分片状态 ok 就允许执行_写_操作),all(必须要主分片和所有副本分片的状态没问题才允许执行_写_操作), 或 quorum 。默认值为 quorum , 即大多数的分片副本状态没问题就允许执行_写_操作。

    注意,规定数量 的计算公式中 number_of_replicas 指的是在索引设置中的设定副本分片数,而不是指当前处理活动状态的副本分片数。如果你的索引设置中指定了当前索引拥有三个副本分片,那规定数量的计算结果即:

    int( (primary + 3 replicas) / 2 ) + 1 = 3
    复制代码

    如果此时你只启动两个节点,那么处于活跃状态的分片副本数量就达不到规定数量,也因此您将无法索引和删除任何文档。

  • timeout
    如果没有足够的副本分片会发生什么? Elasticsearch会等待,希望更多的分片出现。默认情况下,它最多等待1分钟。 如果你需要,你可以使用 timeout 参数 使它更早终止: 100 100毫秒,30s 是30秒。

1.2.2 查询文档

可以从主分片或者从其它任意副本分片检索文档 ,如下图所示 image.png
以下是从主分片或者副本分片检索文档的步骤顺序:

1、客户端向 Node 1 发送获取请求。
2、节点使用文档的 _id 来确定文档属于分片 0 。分片 0 的副本分片存在于所有的三个节点上。 在这种情况下,它将请求转发到 Node 2 。
3、Node 2 将文档返回给 Node 1 ,然后将文档返回给客户端。

在处理读取请求时,协调结点在每次请求的时候都会通过轮询所有的副本分片来达到负载均衡。

在文档被检索时,已经被索引的文档可能已经存在于主分片上但是还没有复制到副本分片。 在这种情况下,副本分片可能会报告文档不存在,但是主分片可能成功返回文档。 一旦索引请求成功返回给用户,文档在主分片和副本分片都是可用的。

1.2.3 更新文档

update API 结合了先前说明的读取和写入模式 image.png
以下是部分更新一个文档的步骤:

  1. 客户端向 Node 1 发送更新请求。
  2. 它将请求转发到主分片所在的 Node 3 。
  3. Node 3 从主分片检索文档,修改 _source 字段中的 JSON ,并且尝试重新索引主分片的文档。 如果文档已经被另一个进程修改,它会重试步骤 3 ,超过 retry_on_conflict 次后放弃。
  4. 如果 Node 3 成功地更新文档,它将新版本的文档并行转发到 Node 1 和 Node 2 上的副本分片,重新建立索引。 一旦所有副本分片都返回成功, Node 3 向协调节点也返回成功,协调节点向客户端返回成功
    基于文档的复制
    当主分片把更改转发到副本分片时, 它不会转发更新请求。 相反,它转发完整文档的新版本。请记住,这些更改将会异步转发到副本分片,并且不能保证它们以发送它们相同的顺序到达。 如果Elasticsearch仅转发更改请求,则可能以错误的顺序应用更改,导致得到损坏的文档。

二、映射和分析(mapping and analyze)

当我们向ES新增数据时,我们甚至不需要先创建索引就可以直接插入数据。其实ES已经帮我们新建了索引,并默认帮我们为每个字段分配了类型。在ES中,不同字段类型的搜索方式是不同的。默认:日期、数值的搜索方式是精确等值搜索,而字符串默认是全文搜索。

2.1 精确值 VS 全文

Elasticsearch 中的数据可以概括的分为两类:精确值和全文。

精确值 如它们听起来那样精确。例如日期或者用户 ID,但字符串也可以表示精确值,例如用户名或邮箱地址。对于精确值来讲,Foo 和 foo 是不同的,2014 和 2014-09-15 也是不同的。

另一方面,全文 是指文本数据(通常以人类容易识别的语言书写),例如一个推文的内容或一封邮件的内容。

全文通常是指非结构化的数据,但这里有一个误解:自然语言是高度结构化的。问题在于自然语言的规则是复杂的,导致计算机难以正确解析。例如,考虑这条语句:
May is fun but June bores me.
它指的是月份还是人?

精确值很容易查询。结果是二进制的:要么匹配查询,要么不匹配。这种查询很容易用 SQL 表示:

WHERE name    = "John Smith"
  AND user_id = 2
  AND date    > "2014-09-15"
复制代码

查询全文数据要微妙的多。我们问的不只是“这个文档匹配查询吗”,而是“该文档匹配查询的程度有多大?”换句话说,该文档与给定查询的相关性如何?

我们很少对全文类型的域做精确匹配。相反,我们希望在文本类型的域中搜索。不仅如此,我们还希望搜索能够理解我们的 意图 :

  • 搜索 UK ,会返回包含 United Kindom 的文档。
  • 搜索 jump ,会匹配 jumped , jumps , jumping ,甚至是 leap 。
  • 搜索 johnny walker 会匹配 Johnnie Walker , johnnie depp 应该匹配 Johnny Depp 。
  • fox news hunting 应该返回福克斯新闻( Foxs News )中关于狩猎的故事,同时, fox hunting news 应该返回关于猎狐的故事。

为了促进这类在全文域中的查询,Elasticsearch 首先 分析 文档,之后根据结果创建 倒排索引 。在接下来的两节,我们会讨论倒排索引和分析过程。

2.2 倒排索引

Elasticsearch 使用一种称为 倒排索引 的结构,它适用于快速的全文搜索。一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。

例如,假设我们有两个文档,每个文档的 content 域包含如下内容:

  1. The quick brown fox jumped over the lazy dog
  2. Quick brown foxes leap over lazy dogs in summer
    为了创建倒排索引,我们首先将每个文档的 content 域拆分成单独的 词(我们称它为 词条 或 tokens ),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。结果如下所示:
Term      Doc_1  Doc_2
-------------------------
Quick   |       |  X
The     |   X   |
brown   |   X   |  X
dog     |   X   |
dogs    |       |  X
fox     |   X   |
foxes   |       |  X
in      |       |  X
jumped  |   X   |
lazy    |   X   |  X
leap    |       |  X
over    |   X   |  X
quick   |   X   |
summer  |       |  X
the     |   X   |
------------------------
复制代码

现在,如果我们想搜索 quick brown ,我们只需要查找包含每个词条的文档:

Term      Doc_1  Doc_2
-------------------------
brown   |   X   |  X
quick   |   X   |
------------------------
Total   |   2   |  1
复制代码

两个文档都匹配,但是第一个文档比第二个匹配度更高。如果我们使用仅计算匹配词条数量的简单 相似性算法 ,那么,我们可以说,对于我们查询的相关性来讲,第一个文档比第二个文档更佳。

但是,我们目前的倒排索引有一些问题:

  • Quick 和 quick 以独立的词条出现,然而用户可能认为它们是相同的词。
  • fox 和 foxes 非常相似, 就像 dog 和 dogs ;他们有相同的词根。
  • jumped 和 leap, 尽管没有相同的词根,但他们的意思很相近。他们是同义词 使用前面的索引搜索 +Quick +fox 不会得到任何匹配文档。(记住,+ 前缀表明这个词必须存在。)只有同时出现 Quick 和 fox 的文档才满足这个查询条件,但是第一个文档包含 quick fox ,第二个文档包含 Quick foxes 。

我们的用户可以合理的期望两个文档与查询匹配。我们可以做的更好。

如果我们将词条规范为标准模式,那么我们可以找到与用户搜索的词条不完全一致,但具有足够相关性的文档。例如:

  • Quick 可以小写化为 quick 。
  • foxes 可以 词干提取 --变为词根的格式-- 为 fox 。类似的, dogs 可以为提取为 dog 。
  • jumped 和 leap 是同义词,可以索引为相同的单词 jump 。 现在索引看上去像这样:
Term      Doc_1  Doc_2
-------------------------
brown   |   X   |  X
dog     |   X   |  X
fox     |   X   |  X
in      |       |  X
jump    |   X   |  X
lazy    |   X   |  X
over    |   X   |  X
quick   |   X   |  X
summer  |       |  X
the     |   X   |  X
------------------------
复制代码

这还远远不够。我们搜索 +Quick +fox 仍然 会失败,因为在我们的索引中,已经没有 Quick 了。但是,如果我们对搜索的字符串使用与 content 域相同的标准化规则,会变成查询 +quick +fox ,这样两个文档都会匹配!
分词和标准化的过程称为 分析

2.3 分析与分析器

分析 包含下面的过程:

  • 首先,将一块文本分成适合于倒排索引的独立的 词条 ,
  • 之后,将这些词条统一化为标准格式以提高它们的“可搜索性”,或者 recall
    分析器执行上面的工作。 分析器 实际上是将三个功能封装到了一个包里:
  • 字符过滤器
    首先,字符串按顺序通过每个 字符过滤器 。他们的任务是在分词前整理字符串。一个字符过滤器可以用来去掉HTML,或者将 & 转化成 and
  • 分词器
    其次,字符串被 分词器 分为单个的词条。一个简单的分词器遇到空格和标点的时候,可能会将文本拆分成词条。
  • Token 过滤器
    最后,词条按顺序通过每个 token 过滤器 。这个过程可能会改变词条(例如,小写化 Quick ),删除词条(例如, 像 a, and, the 等无用词),或者增加词条(例如,像 jump 和 leap 这种同义词)。

Elasticsearch提供了开箱即用的字符过滤器、分词器和token 过滤器。 这些可以组合起来形成自定义的分析器以用于不同的目的。我们会在 自定义分析器 章节详细讨论。

2.3.1 内置分析器

但是, Elasticsearch还附带了可以直接使用的预包装的分析器。接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条:

"Set the shape to semi-transparent by calling set_trans(5)"
复制代码
  • 标准分析器
    标准分析器是Elasticsearch默认使用的分析器。它是分析各种语言文本最常用的选择。它根据 Unicode 联盟 定义的 单词边界 划分文本。删除绝大部分标点。最后,将词条小写。它会产生

    set, the, shape, to, semi, transparent, by, calling, set_trans, 5
    复制代码
  • 简单分析器
    简单分析器在任何不是字母的地方分隔文本,将词条小写。它会产生

    set, the, shape, to, semi, transparent, by, calling, set, trans
    复制代码
  • 空格分析器
    空格分析器在空格的地方划分文本。它会产生

    Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
    复制代码
  • 语言分析器

    特定语言分析器可用于 很多语言。它们可以考虑指定语言的特点。例如, 英语 分析器附带了一组英语无用词(常用单词,例如 and 或者 the ,它们对相关性没有多少影响),它们会被删除。 由于理解英语语法的规则,这个分词器可以提取英语单词的 词干 。

    `英语` 分词器会产生下面的词条:
    
    ```
    set, shape, semi, transpar, call, set_tran, 5
    ```
    
    注意看 `transparent`、 `calling` 和 `set_trans` 已经变为词根格式。  
    
    复制代码

2.3.2 什么时候使用分析器

当我们 索引 一个文档,它的全文域被分析成词条以用来创建倒排索引。 但是,当我们在全文域 搜索 的时候,我们需要将查询字符串通过 相同的分析过程 ,以保证我们搜索的词条格式与索引中的词条格式一致。

全文查询,理解每个域是如何定义的,因此它们可以做正确的事:

  • 当你查询一个 全文 域时, 会对查询字符串应用相同的分析器,以产生正确的搜索词条列表。

  • 当你查询一个 精确值 域时,不会分析查询字符串,而是搜索你指定的精确值。 现在你可以理解在 开始章节 的查询为什么返回那样的结果:

  • date 域包含一个精确值:单独的词条 2014-09-15

  • _all 域是一个全文域,所以分词进程将日期转化为三个词条: 2014, 09, 和 15

当我们在 _all 域查询 2014,它匹配所有的12条推文,因为它们都含有 2014 :

GET /_search?q=2014              # 12 results
复制代码

当我们在 _all 域查询 2014-09-15,它首先分析查询字符串,产生匹配 2014, 09, 或 15 中 任意 词条的查询。这也会匹配所有12条推文,因为它们都含有 2014 :

GET /_search?q=2014-09-15        # 12 results !
复制代码

当我们在 date 域查询 2014-09-15,它寻找 精确 日期,只找到一个推文:

GET /_search?q=date:2014-09-15   # 1  result
复制代码

当我们在 date 域查询 2014,它找不到任何文档,因为没有文档含有这个精确日志:

GET /_search?q=date:2014         # 0  results !  
复制代码

2.3.3 测试分析器

有些时候很难理解分词的过程和实际被存储到索引中的词条,特别是你刚接触Elasticsearch。为了理解发生了什么,你可以使用 analyze API 来看文本是如何被分析的。在消息体里,指定分析器和要分析的文本:

GET /_analyze
{
  "analyzer": "standard",
  "text": "Text to analyze"
}
复制代码

结果中每个元素代表一个单独的词条:

{
   "tokens": [
      {
         "token":        "text",
         "start_offset": 0,
         "end_offset":   4,
         "type":         "<ALPHANUM>",
         "position":     1
      },
      {
         "token":        "to",
         "start_offset": 5,
         "end_offset":   7,
         "type":         "<ALPHANUM>",
         "position":     2
      },
      {
         "token":        "analyze",
         "start_offset": 8,
         "end_offset":   15,
         "type":         "<ALPHANUM>",
         "position":     3
      }
   ]
}
复制代码

token 是实际存储到索引中的词条。 position 指明词条在原始文本中出现的位置。 start_offset 和 end_offset 指明字符在原始字符串中的位置。

2.3.4 指定分析器

当Elasticsearch在你的文档中检测到一个新的字符串域,它会自动设置其为一个全文 字符串 域,使用 标准 分析器对它进行分析。

你不希望总是这样。可能你想使用一个不同的分析器,适用于你的数据使用的语言。有时候你想要一个字符串域就是一个字符串域—​不使用分析,直接索引你传入的精确值,例如用户ID或者一个内部的状态域或标签。

要做到这一点,我们必须手动指定这些域的映射。

分类:
后端
标签:
收藏成功!
已添加到「」, 点击更改