阅读 286

【路径规划】基于matlab RRT算法避障路径规划【含Matlab源码 1220期】

一、RRT算法简介

1 RRT定义 RRT(Rapidly-Exploring Random Tree)算法是一种基于采样的路径规划算法,常用于移动机器人路径规划,适合解决高维空间和复杂约束下的路径规划问题。基本思想是以产生随机点的方式通过一个步长向目标点搜索前进,有效躲避障碍物,避免路径陷入局部极小值,收敛速度快。本文通过matlab实现RRT算法,解决二维平面的路径规划问题。 2 地图 为了方便算法的实现,使用离散量来表达环境地图。其中,数值0表示无障碍物的空区域,数值1表示该区域有障碍物。 在这里插入图片描述 RRT算法中搜索到的顶点坐标为连续点,在地图中产生随机点,算法将通过连续的点构建树。此过程中,对树枝和顶点进行检测,检测顶点所处位置是否是空区域。下载附录中.dat文件,绘制地图。

colormap=[1 1 1; 0 0 0; 1 0 0; 0 1 0; 0 0 1];
imshow(uint8(map),colormap)

复制代码

note:数据中的列为x轴,行为y轴

3 RRT算法原理 通过matlab程序构建从起始位置到目标位置的树,并生成连接两个点的路径。使用一颗中心点在起始点的树,而不是两颗树(一个中心点在起始位置,一个中心点在目标位置)。 编写一个matlab函数,输入和输出有相同的形式。

function [vertices, edges, path] = rrt(map, q_start, q_goal, k, delta_q, p)

复制代码

其中: map:.mat文件中的地图矩阵 q_start:起点的x和y坐标 q_goal:目标点的x和y坐标 k: 在目标点无法找到是,控制产生搜索树的最大迭代次数为k次 delta_q : q_new 和 q_near之间的距离 p: 将q_goal 作为q_rand 的概率,当随机产生的随机数小于p,将目标点作为随机点q_rand,当随机产生的数大于p时,产生一个随机点作为q_rand vertices:顶点的x和y坐标,生成随机树的过程中产生的所有的点的坐标都存储在这个矩阵中,第一个点为起点,最后一个点为目标点。是一个2行n列的矩阵 deges:生成随机树的所有树枝,一共有n-1个树枝,因此该矩阵有n-1行,每一行的两列分别表示两个点的索引号。一旦搜索到目标点,最后一行将表示目标点,沿着目标点回溯,即可找到路径 path: 从起始点到目标点的索引,是一个行向量 下面用一个图来表示上面提到的算法里的一些变量: 在这里插入图片描述 在这里插入图片描述

4 障碍物检测 检测树枝(即q_near和q_new之间的edge)是否处于自由空间,可以使用增量法或者等分法,示意图如下(假设两点之间有10个点,左图为为增量检测法,右图为等分法,从示意图中可以看出使用等分法检测次数更少): 在这里插入图片描述 在本文中,使用k=10000,delta_q=50,p=0.3, 我们将获得如下结果: 在这里插入图片描述

5 路径平滑处理 完成基本的RRT算法之后,我们获得了一条从起点到终点的路径,现在对这条路径进行平滑和降噪处理,处理完成之后,我们将得到一条更短的路径。 采用贪心算法: 连接q_start和q_goal,如果检测到两个点之间有障碍物,则将q_goal替换为前一个点,直到两个点能连接上(中间无障碍物)为止。一旦q_goal被连接上, 在matlab中定义平滑函数:

function [path_smooth] = smooth(map, path, vertices, delta)

复制代码

其中: path: 从起始点到目标位置的路径索引号 vertices:树中所有的顶点坐标 delta:增量距离,用来检测路径顶点之间的直接连接是否在自由空间之内,每个edge都被delta分割成几段 path_smooth:经过平滑处理之后,路径点将会减少,用path_smooth记录平滑之后的路径,仍然是一个行向量,记录路径的索引号

平滑处理之后的路径为: 在这里插入图片描述 6 总结 RRT算法是一种增量式的搜索算法,基于概率的思想,它是一种概率完备的路径优化算法,具有求解速度上的优势。RRT基本算法有其自身缺陷,求解得到的路径通常质量不好,带有棱角,不够光滑。因此需要对路径进行平滑处理,才能得到适合机器人路径跟踪的路径曲线。

二、部分源代码

function result = PlanPathRRTstar(param, p_start, p_goal)

% RRT* 
% credit : Anytime Motion Planning using the RRT*, S. Karaman, et. al.
% calculates the path using RRT* algorithm 
% param : parameters for the problem 
%   1) threshold : stopping criteria (distance between goal and current
%   node)
%   2) maxNodes : maximum nodes for rrt tree 
%   3) neighborhood : distance limit used in finding neighbors
%   4) obstacle : must be rectangle-shaped #limitation
%   5) step_size : the maximum distance that a robot can move at a time
%   (must be equal to neighborhood size) #limitation
%   6) random_seed : to control the random number generation
% p_start : [x;y] coordinates
% p_goal : [x;y] coordinates
% variable naming : when it comes to describe node, if the name is with
% 'node', it means the coordinates of that node or it is just an index of
% rrt tree
% rrt struct : 1) p : coordinate, 2) iPrev : parent index, 3) cost :
% distance
% obstacle can only be detected at the end points but not along the line
% between the points
% for cost, Euclidean distance is considered.
% output : cost, rrt, time_taken 
% whether goal is reached or not, depends on the minimum distance between
% any node and goal 

field1 = 'p';
field2 = 'iPrev';
field3 = 'cost';
field4 = 'goalReached';

rng(param.random_seed);
tic;
start();

    function start()      
        rrt(1) = struct(field1, p_start, field2, 0, field3, 0, field4, 0);  
        N = param.maxNodes; % iterations
        j = 1;

%         while endcondition>param.threshold %&& j<=N     
        while j<=N   
            sample_node = getSample();
%             plot(sample_node(1), sample_node(2), '.g');
%             text(sample_node(1), sample_node(2), strcat('random',num2str(j)))
            nearest_node_ind = findNearest(rrt, sample_node);
%             plot(rrt(nearest_node_ind).p(1), rrt(nearest_node_ind).p(2), '.g');
%             text(rrt(nearest_node_ind).p(1), rrt(nearest_node_ind).p(2), strcat('nearest', num2str(j)));
            new_node = steering(rrt(nearest_node_ind).p, sample_node);
            if (isObstacleFree(new_node)==1)
%                 plot(new_node(1), new_node(2), '.g');
%                 text(new_node(1), new_node(2)+3, strcat('steered: new node', num2str(j)))
                neighbors_ind = getNeighbors(rrt, new_node);
                if(~isempty(neighbors_ind))
                    parent_node_ind = chooseParent(rrt, neighbors_ind, nearest_node_ind,new_node);
%                     plot(rrt(parent_node_ind).p(1), rrt(parent_node_ind).p(2), '.g');
%                     text(rrt(parent_node_ind).p(1), rrt(parent_node_ind).p(2)+3, strcat('parent', num2str(j)));
                else
                    parent_node_ind = nearest_node_ind;
                end
                rrt = insertNode(rrt, parent_node_ind, new_node);
                if (~isempty(neighbors_ind))
                    rrt = reWire(rrt, neighbors_ind, parent_node_ind, length(rrt));
                end
                if norm(new_node-p_goal) == param.threshold
                    rrt = setReachGoal(rrt);
                end
            end
            j = j + 1;
        end
        setPath(rrt);
%         text1 = strcat('Total number of generated nodes:', num2str(j-1))
%         text1 = strcat('Total number of nodes in tree:', length(rrt))
    end
    
    function rrt=setReachGoal(rrt)
        rrt(end).goalReached = 1;
    end
    
    
    function setPath(rrt)       
        for i = 1: length(rrt)-1
            p1 = rrt(i).p;
            rob.x = p1(1); rob.y=p1(2);
            plot(rob.x,rob.y,'.b')
            child_ind = find([rrt.iPrev]==i);
            for j = 1: length(child_ind)
                p2 = rrt(child_ind(j)).p;
                plot([p1(1),p2(1)], [p1(2),p2(2)], 'b', 'LineWidth', 1);
            end
        end 
        
        [cost,i] = getFinalResult(rrt);
        result.cost = cost;
        result.rrt = [rrt.p];
        while i ~= 0
            p11 = rrt(i).p;
            plot(p11(1),p11(2),'b', 'Marker','.', 'MarkerSize', 30);
            i = rrt(i).iPrev;
            if i ~= 0
                p22 = rrt(i).p;                
                plot(p22(1),p22(2),'b', 'Marker', '.', 'MarkerSize', 30);
%                 plot([p11(1),p22(1)],[p11(2),p22(2)], 'b', 'LineWidth', 3);
            end 
        end  
        result.time_taken = toc;
        
        
    end

    function [value,min_node_ind] = getFinalResult(rrt)
        goal_ind = find([rrt.goalReached]==1);
        if ~(isempty(goal_ind))
            disp('Goal has been reached!');
            rrt_goal = rrt(goal_ind);
            value = min([rrt_goal.cost]);
            min_node_ind = find([rrt.cost]==value);
            if length(min_node_ind)>1
                min_node_ind = min_node_ind(1);
            end
        else
            disp('Goal has not been reached!');
            for i =1:length(rrt)
                norm_rrt(i) = norm(p_goal-rrt(i).p);
            end
            [value,min_node_ind]= min(norm_rrt); 
            value = rrt(min_node_ind).cost;
        end
    end
    
    % if it is obstacle-free, return 1.
    % otherwise, return 0
    function free=isObstacleFree(node_free)
        free = 1;
        for i = 1: length(param.obstacles(:,1))
            obstacle = param.obstacles(i,:);
            op1 = [obstacle(1), obstacle(2)];
            op2 = [op1(1)+obstacle(3), op1(2)];
            op3 = [op2(1), op1(2) + obstacle(4)];
            op4 = [op1(1), op3(2)];
            
            nx = node_free(1);
            ny = node_free(2);
            
            if ((nx>=op1(1) && nx<=op2(1)) && (ny>=op1(2) && ny<=op4(2)))
                free = 0;
            end
        end 
    end
    
    function new_node=steering(nearest_node, random_node)
       dist = norm(random_node-nearest_node);
       ratio_distance = param.step_size/dist;
       
       x = (1-ratio_distance).* nearest_node(1)+ratio_distance .* random_node(1);
       y = (1-ratio_distance).* nearest_node(2)+ratio_distance .* random_node(2);
       
       
       new_node = [x;y];
    end
    
    function rrt = reWire(rrt, neighbors, parent, new)
        for i=1:length(neighbors)
            cost = rrt(new).cost + norm(rrt(neighbors(i)).p - rrt(new).p);
            
            if (cost<rrt(neighbors(i)).cost)
%                 if norm(rrt(new).p-rrt(neighbors(i)).p)<param.step_size
% %                     plot(rrt(neighbors(i)).p(1), rrt(neighbors(i)).p(2), '.b');
%                     rrt(neighbors(i)).p = steering(rrt(new).p, rrt(neighbors(i)).p);
%                 end
%                 plot(rrt(neighbors(i)).p(1), rrt(neighbors(i)).p(2), '.m');
                rrt(neighbors(i)).iPrev = new;
                rrt(neighbors(i)).cost = cost;
            end
        end
    end
    

    function rrt = insertNode(rrt, parent, new_node)
        rrt(end+1) = struct(field1, new_node, field2, parent, field3, rrt(parent).cost + norm(rrt(parent).p-new_node), field4, 0);
    end
    
    function parent = chooseParent(rrt, neighbors, nearest, new_node)
        min_cost = getCostFromRoot(rrt, nearest, new_node);
        parent = nearest;
        for i=1:length(neighbors)
            cost = getCostFromRoot(rrt, neighbors(i), new_node);
            if (cost<min_cost)
               min_cost = cost;
               parent = neighbors(i);
            end
        end
    end
    
    function cost = getCostFromRoot(rrt, parent, child_node)       
       cost =  rrt(parent).cost + norm(child_node - rrt(parent).p);
    end

    function neighbors = getNeighbors(rrt, node)
        neighbors = [];
        for i = 1:length(rrt)
            dist = norm(rrt(i).p-node);
            if (dist<=param.neighbourhood)
               neighbors = [neighbors i];
            end
        end        
    end
    
复制代码

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本 2014a

2 参考文献 [1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016. [2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017. [3]RRT路径规划算法

文章分类
人工智能
文章标签