6.9 二叉树的建立
说了半天,我们如何在内存中生成一棵二叉链表的二叉树呢?树都没有,哪来遍历。所以我们还得来谈谈关于二叉树建立的问题。
如果我们要在内存中建立一个如图6-9-1左图这样的树,为了能让每个结点确认是否有左右孩子,我们对它进行了扩展,变成图6-9-1右图的样子,也就是将二叉树中每个结点的空指针引出一个虚结点,其值为一特定值,比如“#”。我们称这种处理后的二叉树为原二叉树的扩展二叉树。扩展二叉树就可以做到一个遍历序列确定一棵二叉树了。比如图6-9-1的前序遍历序列就为AB#D##C##。
图6-9-1 有了这样的准备,我们就可以来看看如何生成一棵二叉树了。假设二叉树的结点均为一个字符,我们把刚才前序遍历序列AB#D##C##用键盘挨个输入。实现的算法如下:
其实建立二叉树,也是利用了递归的原理。只不过在原来应该是打印结点的地方,改成了生成结点、给结点赋值的操作而已。所以大家理解了前面的遍历的话,对于这段代码就不难理解了。
当然,你完全也可以用中序或后序遍历的方式实现二叉树的建立,只不过代码里生成结点和构造左右子树的代码顺序交换一下。另外,输入的字符也要做相应的更改。比如图6-9-1的扩展二叉树的中序遍历字符串就应该为#B#D#A#C#,而后序字符串应该为###DB##CA。
6.10 线索二叉树
6.10.1 线索二叉树原理
我们现在提倡节约型社会,一切都应该节约为本。对待我们的程序当然也不例外,能不浪费的时间或空间,都应该考虑节省。我们再来观察图6-10-1,会发现指针域并不是都充分的利用了,有许许多多的“∧”,也就是空指针域的存在,这实在不是好现象,应该要想办法利用起来。
图6-10-1
首先我们要来看看这空指针有多少个呢?对于一个有n个结点的二叉链表,每个结点有指向左右孩子的两个指针域,所以一共是2n个指针域。而n个结点的二叉树一共有n-1条分支线数,也就是说,其实是存在2n-(n-1)=n+1个空指针域。比如图6-10-1有10个结点,而带有“∧”空指针域为11。这些空间不存储任何事物,白白的浪费着内存的资源。 另一方面,我们在做遍历时,比如对图6-10-1做中序遍历时,得到了HDIBJEAFCG这样的字符序列,遍历过后,我们可以知道,结点I的前驱是D,后继是B,结点F的前驱是A,后继是C。也就是说,我们可以很清楚的知道任意一个结点,它的前驱和后继是哪一个。
可是这是建立在已经遍历过的基础之上的。在二叉链表上,我们只能知道每个结点指向其左右孩子结点的地址,而不知道某个结点的前驱是谁,后继是谁。要想知道,必须遍历一次。以后每次需要知道时,都必须先遍历一次。为什么不考虑在创建时就记住这些前驱和后继呢,那将是多大的时间上的节省。
综合刚才两个角度的分析后,我们可以考虑利用那些空地址,存放指向结点在某种遍历次序下的前驱和后继结点的地址。就好像GPS导航仪一样,我们开车的时候,哪怕我们对具体目的地的位置一无所知,但它每次都可以告诉我从当前位置的下一步应该走向哪里。这就是我们现在要研究的问题。我们把这种指向前驱和后继的指针称为线索,加上线索的二叉链表称为线索链表,相应的二叉树就称为线索二叉树(Threaded Binary Tree) 。
请看图6-10-2,我们把这棵二叉树进行中序遍历后,将所有的空指针域中的rchild,改为指向它的后继结点。于是我们就可以通过指针知道H的后继是D(图中①),I的后继是B(图中②),J的后继是E(图中③),E的后继是A(图中④),F的后继是C(图中⑤),G的后继因为不存在而指向NULL(图中⑥)。此时共有6个空指针域被利用。
图6-10-2
再看图6-10-3,我们将这棵二叉树的所有空指针域中的lchild,改为指向当前结点的前驱。因此H的前驱是NULL(图中①),I的前驱是D(图中②),J的前驱是B(图中③),F的前驱是A(图中④),G的前驱是C(图中⑤)。一共5个空指针域被利用,正好和上面的后继加起来是11个。
图6-10-3
通过图6-10-4(空心箭头实线为前驱,虚线黑箭头为后继),就更容易看出,其实线索二叉树,等于是把一棵二叉树转变成了一个双向链表,这样对我们的插入删除结点、查找某个结点都带来了方便。所以我们对二叉树以某种次序遍历使其变为线索二叉树的过程称做是线索化。
图6-10-4
不过好事总是多磨的,问题并没有彻底解决。我们如何知道某一结点的lchild是指向它的左孩子还是指向前驱?rchild是指向右孩子还是指向后继?比如E结点的lchild是指向它的左孩子J,而rchild却是指向它的后继A。显然我们在决定lchild是指向左孩子还是前驱,rchild是指向右孩子还是后继上是需要一个区分标志的。因此,我们在每个结点再增设两个标志域ltag和rtag,注意ltag和rtag只是存放0或1数字的布尔型变量,其占用的内存空间要小于像lchild和rchild的指针变量。结点结构如表6-10-1所示。
表6-10-1
其中:
■ ltag为0时指向该结点的左孩子,为1时指向该结点的前驱。
■ rtag为0时指向该结点的右孩子,为1时指向该结点的后继。
■ 因此对于图6-10-1的二叉链表图可以修改为图6-10-5的样子。
图6-10-5
6.10.2 线索二叉树结构实现
由此二叉树的线索存储结构定义代码如下:
线索化的实质就是将二叉链表中的空指针改为指向前驱或后继的线索。由于前驱和后继的信息只有在遍历该二叉树时才能得到,所以线索化的过程就是在遍历的过程 中修改空指针的过程。
中序遍历线索化的递归函数代码如下:
你会发现,这代码除加粗代码以外,和二叉树中序遍历的递归代码几乎完全一样。只不过将本是打印结点的功能改成了线索化的功能。
中间加粗部分代码是做了这样的一些事。
if(!p->lchild)表示如果某结点的左指针域为空,因为其前驱结点刚刚访问过,赋值给了pre,所以可以将pre赋值给p->lchild,并修改p->LTag=Thread(也就是定义为1)以完成前驱结点的线索化。 后继就要稍稍麻烦一些。因为此时p结点的后继还没有访问到,因此只能对它的前驱结点pre的右指针rchild做判断,if(!pre->rchild)表示如果为空,则p就是pre的后继,于是pre->rchild=p,并且设置pre->RTag=Thread,完成后继结点的线索化。
完成前驱和后继的判断后,别忘记将当前的结点p赋值给pre,以便于下一次使用。
有了线索二叉树后,我们对它进行遍历时发现,其实就等于是操作一个双向链表结构。
和双向链表结构一样,在二叉树线索链表上添加一个头结点,如图6-10-6所示,并令其lchild域的指针指向二叉树的根结点(图中的①),其rchild域的指针指向中序遍历时访问的最后一个结点(图中的②)。反之,令二叉树的中序序列中的第一个结点中,lchild域指针和最后一个结点的rchild域指针均指向头结点(图中的③和④)。这样定义的好处就是我们既可以从第一个结点起顺后继进行遍历,也可以从最后一个结点起顺前驱进行遍历。
图6-10-6
遍历的代码如下:
1.代码中,第4行,p=T->lchild;意思就是图6-10-6中的①,让p指向根结点开始遍历。
2.第5~16行,while(p!=T)其实意思就是循环直到图中的④的出现,此时意味着p指向了头结点,于是与T相等(T是指向头结点的指针),结束循环,否则一直循环下去进行遍历操作。
3.第7~8行,whild(p->LTag==Link)这个循环,就是由A→B→D→H,此时H结点的LTag不是Link(就是不等于0),所以结束此循环。
4.第9行,打印H。
5.第10~14行,while(p->RTag==Thread && p->rchild!=T),由于结点H的RTag==Thread(就是等于1),且不是指向头结点。因此打印H的后继D,之后因为D的RTag是Link,因此退出循环。
6.第15行,p=p->rchild;意味着p指向了结点D的右孩子I。
7.……,就这样不断循环遍历,路径参照图6-10-4,直到打印出HDIBJEAFCG,结束遍历操作。
从这段代码也可以看出,它等于是一个链表的扫描,所以时间复杂度为O(n)。
由于它充分利用了空指针域的空间(这等于节省了空间),又保证了创建时的一次遍历就可以终生受用前驱后继的信息(这意味着节省了时间)。所以在实际问题中,如果所用的二叉树需经常遍历或查找结点时需要某种遍历序列中的前驱和后继,那么采用线索二叉链表的存储结构就是非常不错的选择。
6.11 树、森林与二叉树的转换
我之前在网上看到这样一个故事,不知道是真还是假,反正是有点意思。
故事是说联合利华引进了一条香皂包装生产线,结果发现这条生产线有个缺陷:常常会有盒子里没装入香皂。总不能把空盒子卖给顾客啊,他们只好请了一个学自动化的博士设计一个方案来分拣空的香皂盒。博士组织成立了一个十几人的科研攻关小组,综合采用了机械、微电子、自动化、X射线探测等技术,花了几十万,成功解决了问题。每当生产线上有空香皂盒通过,两旁的探测器会检测到,并且驱动一只机械手把空皂盒推走。
中国南方有个乡镇企业也买了同样的生产线,老板发现这个问题后大为光火,找了个小工来说:你把这个问题搞定,不然老子炒你鱿鱼。小工很快想出了办法:他在生产线旁边放了台风扇猛吹,空皂盒自然会被吹走。
这个故事在网上引起了很大的争议,我相信大家听完后也会有不少的想法。不过我在这只是想说,有很多复杂的问题都是可以有简单办法去处理的,在于你肯不肯动脑筋,在于你有没有创新。
我们前面已经讲过了树的定义和存储结构,对于树来说,在满足树的条件下可以是任意形状,一个结点可以有任意多个孩子,显然对树的处理要复杂得多,去研究关于树的性质和算法,真的不容易。有没有简单的办法解决对树处理的难题呢?
我们前面也讲了二叉树,尽管它也是树,但由于每个结点最多只能有左孩子和右孩子,面对的变化就少很多了。因此很多性质和算法都被研究了出来。如果所有的树都像二叉树一样方便就好了。你还别说,真是可以这样做。
图6-11-1
在讲树的存储结构时,我们提到了树的孩子兄弟法可以将一棵树用二叉链表进行存储,所以借助二叉链表,树和二叉树可以相互进行转换。从物理结构来看,它们的二叉链表也是相同的,只是解释不太一样而已。因此,只要我们设定一定的规则,用二叉树来表示树,甚至表示森林都是可以的,森林与二叉树也可以互相进行转换。
我们分别来看看它们之间的转换如何进行。
6.11.1 树转换为二叉树
将树转换为二叉树的步骤如下
1.加线。在所有兄弟结点之间加一条连线。
2.去线。对树中每个结点,只保留它与第一个孩子结点的连线,删除它与其他孩子结点之间的连线。
3.层次调整。以树的根结点为轴心,将整棵树顺时针旋转一定的角度,使之结构层次分明。注意第一个孩子是二叉树结点的左孩子,兄弟转换过来的孩子是结点的右孩子。
例如图6-11-2,一棵树经过三个步骤转换为一棵二叉树。初学者容易犯的错误就是在层次调整时,弄错了左右孩子的关系。比如图中F、G本都是树结点B的孩子,是结点E的兄弟,因此转换后,F就是二叉树结点E的右孩子,G是二叉树结点F的右孩子。
图6-11-2
6.11.2 森林转换为二叉树
森林是由若干棵树组成的,所以完全可以理解为,森林中的每一棵树都是兄弟,可以按照兄弟的处理办法来操作。步骤如下:
1.把每个树转换为二叉树。
2.第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子,用线连接起来。当所有的二叉树连接起来后就得到了由森林转换来的二叉树。
例如图6-11-3,将森林的三棵树转化为一棵二叉树。
图6-11-3
6.11.3 二叉树转换为树
二叉树转换为树是树转换为二叉树的逆过程,也就是反过来做而已。如图6-11-4所示。步骤如下:
1.加线。若某结点的左孩子结点存在,则将这个左孩子的右孩子结点、右孩子的右孩子结点、右孩子的右孩子的右孩子结点……哈,反正就是左孩子的n个右孩子结点都作为此结点的孩子。将该结点与这些右孩子结点用线连接起来。
2.去线。删除原二叉树中所有结点与其右孩子结点的连线。
3.层次调整。使之结构层次分明。
图6-11-4
6.11.4 二叉树转换为森林
判断一棵二叉树能够转换成一棵树还是森林,标准很简单,那就是只要看这棵二叉树的根结点有没有右孩子,有就是森林,没有就是一棵树。那么如果是转换成森林,步骤如下:
1.从根结点开始,若右孩子存在,则把与右孩子结点的连线删除,再查看分离后的二叉树,若右孩子存在,则连线删除……,直到所有右孩子连线都删除为止,得到分离的二叉树。
2.再将每棵分离后的二叉树转换为树即可。
图6-11-5
6.11.5 树与森林的遍历
最后我们再谈一谈关于树和森林的遍历问题。
树的遍历分为两种方式。
1.一种是先根遍历树,即先访问树的根结点,然后依次先根遍历根的每棵子树。
2.另一种是后根遍历,即先依次后根遍历每棵子树,然后再访问根结点。比如图6-11-4中最右侧的树,它的先根遍历序列为ABEFCDG,后根遍历序列为EFBCGDA。
森林的遍历也分为两种方式:
1.前序遍历: 先访问森林中第一棵树的根结点,然后再依次先根遍历根的每棵子树,再依次用同样方式遍历除去第一棵树的剩余树构成的森林。比如图6-11-5右侧三棵树的森林,前序遍历序列的结果就是ABCDEFGHJI。
2.后序遍历: 是先访问森林中第一棵树,后根遍历的方式遍历每棵子树,然后再访问根结点,再依次同样方式遍历除去第一棵树的剩余树构成的森林。比如图6-11-5右侧三棵树的森林,后序遍历序列的结果就是BCDAFEJHIG。
可如果我们对图6-11-4的左侧二叉树进行分析就会发现,森林的前序遍历和二叉树的前序遍历结果相同,森林的后序遍历和二叉树的中序遍历结果相同。
这也就告诉我们,当以二叉链表作树的存储结构时,树的先根遍历和后根遍历完全可以借用二叉树的前序遍历和中序遍历的算法来实现。这其实也就证实,我们找到了对树和森林这种复杂问题的简单解决办法。