多线程 - 锁
标签: 多线程 锁
本章节主要介绍多线程中使用 锁
- 自旋锁(OSSpinLock atomic)
- 互斥锁(@synchronized NSLock pthread_mutex)
- 条件锁 (NSCondition NSConditionLock)
- 递归锁 (pthread_mutex(recursive) NSRecursiveLock )
- 信号量 dispatch_semaphore
- 读写锁
1 锁的分类
1.1 自旋锁
在自旋锁中,线程会反复检查变量是否可用。由于线程这个过程中一致保持执行,所以是一种忙等待。 一旦获取了自旋锁,线程就会一直保持该锁,直到显式释放自旋锁。自旋锁避免了进程上下文的调度开销,因此对于线程只会阻塞很短时间的场合是有效的。对于iOS属性的修饰符atomic,自带一把自旋锁
OSSpinLock atomic 属于自旋锁
1.2 互斥锁
互斥锁是一种用于多线程编程中,防止两条线程同时对同一公共资源(例如全局变量)进行读写的机制,该目的是通过将代码切成一个个临界区而达成
@synchronized NSLock pthread_mutex 属于互斥锁
1.3 条件锁:
条件锁就是条件变量,当进程的某些资源要求不满足时就进入休眠,即锁住了,当资源被分配到了,条件锁打开了,进程继续运行
NSCondition NSConditionLock 属于条件锁
1.4 递归锁
递归锁就是同一个线程可以加锁N次而不会引发死锁。递归锁是特殊的互斥锁,即是带有递归性质的互斥锁
pthread_mutex(recursive) NSRecursiveLock 属于递归锁
1.5 信号量
信号量是一种更高级的同步机制,互斥锁可以说是semaphore在仅取值0/1时的特例,信号量可以有更多的取值空间,用来实现更加复杂的同步,而不单单是线程间互斥
dispatch_semaphore
1.6 读写锁
读写锁实际是一种特殊的自旋锁。将对共享资源的访问分成读者和写者,读者只对共享资源进行读访问,写者则需要对共享资源进行写操作。这种锁相对于自旋锁而言,能提高并发性
一个读写锁同时只能有一个写者或者多个读者,但不能既有读者又有写者,在读写锁保持期间也是抢占失效的
如果读写锁当前没有读者,也没有写者,那么写者可以立刻获得读写锁,否则它必须自旋在那里, 直到没有任何写者或读者。如果读写锁没有写者,那么读者可以立
其实基本的锁就包括三类:自旋锁、互斥锁、读写锁,其他的比如 条件锁、递归锁、信号量都是上层的封装和实现。
2 锁
2.1 OSSpinLock(自旋锁)
自从OSSpinLock出现安全问题,在iOS10之后就被废弃了。自旋锁之所以不安全,是因为获取锁后,线程会一直处于忙等待,造成了任务的优先级反转。
其中的忙等待机制可能会造成高优先级任务一直running等待,占用时间片,而低优先级的任务无法抢占时间片,会造成一直不能完成,锁未释放的情况
在OSSpinLock被弃用后,其替代方案是内部封装了os_unfair_lock,而os_unfair_lock在加锁时会处于休眠状态,而不是自旋锁的忙等状态
2.2 atomic(原子锁)
atomic适用于OC中属性的修饰符,其自带一把自旋锁,但是这个一般基本不使用,都是使用的nonatomic
static inline void reallySetProperty(id self, SEL _cmd, id newValue, ptrdiff_t offset, bool atomic, bool copy, bool mutableCopy)
{
...
id *slot = (id*) ((char*)self + offset);
...
if (!atomic) {//未加锁
oldValue = *slot;
*slot = newValue;
} else {//加锁
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();
oldValue = *slot;
*slot = newValue;
slotlock.unlock();
}
...
}
从objc4-818.2 源码中可以看出,对于atomic修饰的属性,进行了spinlock_t加锁处理,但是在前文中提到OSSpinLock已经废弃了,这里的spinlock_t在底层是通过os_unfair_lock替代了OSSpinLock实现的加锁。同时为了防止哈希冲突,还是用了加盐操作
using spinlock_t = mutex_tt<LOCKDEBUG>;
class mutex_tt : nocopy_t {
os_unfair_lock mLock;
...
}
getter方法中对atomic的处理,同setter是大致相同的
id objc_getProperty(id self, SEL _cmd, ptrdiff_t offset, BOOL atomic) {
if (offset == 0) {
return object_getClass(self);
}
// Retain release world
id *slot = (id*) ((char*)self + offset);
if (!atomic) return *slot;
// Atomic retain release world
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();//加锁
id value = objc_retain(*slot);
slotlock.unlock();//解锁
// for performance, we (safely) issue the autorelease OUTSIDE of the spinlock.
return objc_autoreleaseReturnValue(value);
}
2.3 synchronized(互斥递归锁)底层原理探索
开启汇编调试,发现@synchronized在执行过程中,会走底层的objc_sync_enter 和 objc_sync_exit方法

通过对objc_sync_enter方法符号断点,查看底层所在的源码库,通过断点发现在objc源码中,即libobjc.A.dylib
2.3.1 objc_sync_enter
int objc_sync_enter(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {//传入不为nil
SyncData* data = id2data(obj, ACQUIRE);//重点
ASSERT(data);
data->mutex.lock();//加锁
} else {//传入nil
// @synchronized(nil) does nothing
if (DebugNilSync) {
_objc_inform("NIL SYNC DEBUG: @synchronized(nil); set a breakpoint on objc_sync_nil to debug");
}
objc_sync_nil();
}
return result;
}
- 如果obj存在,则通过id2data方法获取相应的SyncData,对threadCount、lockCount进行递增操作
- 如果obj不存在,则调用objc_sync_nil,通过符号断点得知,这个方法里面什么都没做,直接 objc_sync_nil
2.3.2 objc_sync_exit
// End synchronizing on 'obj'. 结束对“ obj”的同步
// Returns OBJC_SYNC_SUCCESS or OBJC_SYNC_NOT_OWNING_THREAD_ERROR
int objc_sync_exit(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {//obj不为nil
SyncData* data = id2data(obj, RELEASE);
if (!data) {
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
} else {
bool okay = data->mutex.tryUnlock();//解锁
if (!okay) {
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
}
}
} else {//obj为nil时,什么也不做
// @synchronized(nil) does nothing
}
return result;
}
- 如果obj存在,则调用id2data方法获取对应的SyncData,对threadCount、lockCount进行递减操作
- 如果obj为nil,什么也不做
2.3.3 SyncData
通过上面两个实现逻辑的对比,发现它们有一个共同点,在obj存在时,都会通过id2data方法,获取SyncData
- 进入SyncData的定义,是一个结构体,主要用来表示一个线程data,类似于链表结构,有next指向,且封装了recursive_mutex_t属性,可以确认@synchronized确实是一个递归互斥锁
typedef struct alignas(CacheLineSize) SyncData {
struct SyncData* nextData;//类似链表结构
DisguisedPtr<objc_object> object;
int32_t threadCount; // number of THREADS using this block
recursive_mutex_t mutex;//递归锁
} SyncData;
- 进入SyncCache的定义,也是一个结构体,用于存储线程,其中list[0]表示当前线程的链表data,主要用于存储SyncData和lockCount
typedef struct {
SyncData *data;
unsigned int lockCount; // number of times THIS THREAD locked this block
} SyncCacheItem;
typedef struct SyncCache {
unsigned int allocated;
unsigned int used;
SyncCacheItem list[0];
} SyncCache;
2.3.4 id2data 分析
进入id2data源码,从上面的分析,可以看出,这个方法是加锁和解锁都复用的方法
static SyncData* id2data(id object, enum usage why)
{
spinlock_t *lockp = &LOCK_FOR_OBJ(object);
SyncData **listp = &LIST_FOR_OBJ(object);
SyncData* result = NULL;
#if SUPPORT_DIRECT_THREAD_KEYS //tls(Thread Local Storage,本地局部的线程缓存)
// Check per-thread single-entry fast cache for matching object
bool fastCacheOccupied = NO;
//通过KVC方式对线程进行获取 线程绑定的data
SyncData *data = (SyncData *)tls_get_direct(SYNC_DATA_DIRECT_KEY);
//如果线程缓存中有data,执行if流程
if (data) {
fastCacheOccupied = YES;
//如果在线程空间找到了data
if (data->object == object) {
// Found a match in fast cache.
uintptr_t lockCount;
result = data;
//通过KVC获取lockCount,lockCount用来记录 被锁了几次,即 该锁可嵌套
lockCount = (uintptr_t)tls_get_direct(SYNC_COUNT_DIRECT_KEY);
if (result->threadCount <= 0 || lockCount <= 0) {
_objc_fatal("id2data fastcache is buggy");
}
switch(why) {
case ACQUIRE: {
//objc_sync_enter走这里,传入的是ACQUIRE -- 获取
lockCount++;//通过lockCount判断被锁了几次,即表示 可重入(递归锁如果可重入,会死锁)
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);//设置
break;
}
case RELEASE:
//objc_sync_exit走这里,传入的why是RELEASE -- 释放
lockCount--;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
if (lockCount == 0) {
// remove from fast cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, NULL);
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
#endif
// Check per-thread cache of already-owned locks for matching object
SyncCache *cache = fetch_cache(NO);//判断缓存中是否有该线程
//如果cache中有,方式与线程缓存一致
if (cache) {
unsigned int i;
for (i = 0; i < cache->used; i++) {//遍历总表
SyncCacheItem *item = &cache->list[i];
if (item->data->object != object) continue;
// Found a match.
result = item->data;
if (result->threadCount <= 0 || item->lockCount <= 0) {
_objc_fatal("id2data cache is buggy");
}
switch(why) {
case ACQUIRE://加锁
item->lockCount++;
break;
case RELEASE://解锁
item->lockCount--;
if (item->lockCount == 0) {
// remove from per-thread cache 从cache中清除使用标记
cache->list[i] = cache->list[--cache->used];
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
// Thread cache didn't find anything.
// Walk in-use list looking for matching object
// Spinlock prevents multiple threads from creating multiple
// locks for the same new object.
// We could keep the nodes in some hash table if we find that there are
// more than 20 or so distinct locks active, but we don't do that now.
//第一次进来,所有缓存都找不到
lockp->lock();
{
SyncData* p;
SyncData* firstUnused = NULL;
for (p = *listp; p != NULL; p = p->nextData) {//cache中已经找到
if ( p->object == object ) {//如果不等于空,且与object相似
result = p;//赋值
// atomic because may collide with concurrent RELEASE
OSAtomicIncrement32Barrier(&result->threadCount);//对threadCount进行++
goto done;
}
if ( (firstUnused == NULL) && (p->threadCount == 0) )
firstUnused = p;
}
// no SyncData currently associated with object 没有与当前对象关联的SyncData
if ( (why == RELEASE) || (why == CHECK) )
goto done;
// an unused one was found, use it 第一次进来,没有找到
if ( firstUnused != NULL ) {
result = firstUnused;
result->object = (objc_object *)object;
result->threadCount = 1;
goto done;
}
}
// Allocate a new SyncData and add to list.
// XXX allocating memory with a global lock held is bad practice,
// might be worth releasing the lock, allocating, and searching again.
// But since we never free these guys we won't be stuck in allocation very often.
posix_memalign((void **)&result, alignof(SyncData), sizeof(SyncData));//创建赋值
result->object = (objc_object *)object;
result->threadCount = 1;
new (&result->mutex) recursive_mutex_t(fork_unsafe_lock);
result->nextData = *listp;
*listp = result;
done:
lockp->unlock();
if (result) {
// Only new ACQUIRE should get here.
// All RELEASE and CHECK and recursive ACQUIRE are
// handled by the per-thread caches above.
if (why == RELEASE) {
// Probably some thread is incorrectly exiting
// while the object is held by another thread.
return nil;
}
if (why != ACQUIRE) _objc_fatal("id2data is buggy");
if (result->object != object) _objc_fatal("id2data is buggy");
#if SUPPORT_DIRECT_THREAD_KEYS
if (!fastCacheOccupied) { //判断是否支持栈存缓存,支持则通过KVC形式赋值 存入tls
// Save in fast thread cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, result);
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)1);//lockCount = 1
} else
#endif
{
// Save in thread cache 缓存中存一份
if (!cache) cache = fetch_cache(YES);//第一次存储时,对线程进行了绑定
cache->list[cache->used].data = result;
cache->list[cache->used].lockCount = 1;
cache->used++;
}
}
return result;
}
- 首先在tls即线程缓存中查找。
- 在tls_get_direct方法中以线程为key,通过KVC的方式获取与之绑定的SyncData,即线程data。其中的tls(),表示本地局部的线程缓存,
- 判断获取的data是否存在,以及判断data中是否能找到对应的object
- 如果都找到了,在tls_get_direct方法中以KVC的方式获取lockCount,用来记录对象被锁了几次(即锁的嵌套次数)
- 如果data中的threadCount 小于等于0,或者 lockCount 小于等于0时,则直接崩溃
- 通过传入的why,判断是操作类型
- 如果是ACQUIRE,表示加锁,则进行lockCount++,并保存到tls缓存
- 如果是RELEASE,表示释放,则进行lockCount–,并保存到tls缓存。如果lockCount等于 0,从tls中移除线程data
- 如果是CHECK,则什么也不做 ##### 2.3.4.2 如果tls中没有,则在cache缓存中查找
- 通过fetch_cache方法查找cache缓存中是否有线程
- 如果有,则遍历cache总表,读取出线程对应的SyncCacheItem
- 从SyncCacheItem中取出data,然后后续步骤与tls的匹配是一致的
- 如果tls中没有,则在cache缓存中查找
- 通过fetch_cache方法查找cache缓存中是否有线程
- 如果有,则遍历cache总表,读取出线程对应的SyncCacheItem
- 从SyncCacheItem中取出data,然后后续步骤与tls的匹配是一致的
- 如果cache中也没有,即第一次进来,则创建SyncData,并存储到相应缓存中
- 如果在cache中找到线程,且与object相等,则进行赋值、以及threadCount++
- 如果在cache中没有找到,则threadCount等于1
简单来说 在id2data方法中,主要分为三种情况
- 【第一次进来,没有锁】:
- threadCount = 1
- lockCount = 1
- 存储到tls
- 【不是第一次进来,且是同一个线程】
- tls中有数据,则lockCount++
- 存储到tls
- 【不是第一次进来,且是不同线程】
- 全局线程空间进行查找线程
- threadCount++
- lockCount++
- 存储到cache
tls和cache表结构 针对tls和cache缓存,底层的表结构如下所示

tls和cache缓存结构
- 哈希表结构中通过SyncList结构来组装多线程的情况
- SyncData通过链表的形式组装当前可重入的情况
- 下层通过tls线程缓存、cache缓存来进行处理
- 底层主要有两个东西:lockCount、threadCount,解决了递归互斥锁,解决了嵌套可重入
2.3.5 @synchronized 注意点
下面代码这样写,会有什么问题?
- (void)testSync{
_testArray = [NSMutableArray array];
for (int i = 0; i < 100000; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
@synchronized (self.testArray) {
self.testArray = [NSMutableArray array];
}
});
}
}
崩溃的主要原因是testArray在某一瞬间变成了nil,从@synchronized底层流程知道,如果加锁的对象成了nil,是锁不住的,相当于下面这种情况,block内部不停的retain、release,会在某一瞬间上一个还未release,下一个已经准备release,这样会导致野指针的产生
我们一般使用@synchronized (self),主要是因为_testArray的持有者是self
拓展 野指针 vs 过渡释放
- 野指针:是指由于过渡释放产生的指针还在进行操作
- 过渡释放:每次都会retain 和 release
2.3.6 总结
- @synchronized 在底层封装的是一把递归锁,所以这个锁是递归互斥锁
- @synchronized的可重入,即可嵌套,主要是由于lockCount 和 threadCount的搭配
- @synchronized使用链表的原因是链表方便下一个data的插入,
- 但是由于底层中链表查询、缓存的查找以及递归,是非常耗内存以及性能的,导致性能低,所以在前文中,该锁的排名在最后
- 但是目前该锁的使用频率仍然很高,主要是因为方便简单,且不用解锁
- 不能使用非OC对象作为加锁对象,因为其object的参数为id
- @synchronized (self)这种适用于嵌套次数较少的场景。这里锁住的对象也并不永远是self,这里需要读者注意
- 如果锁嵌套次数较多,即锁self过多,会导致底层的查找非常麻烦,因为其底层是链表进行查找,所以会相对比较麻烦,所以此时可以使用NSLock、信号量等
2.4 NSLock
NSLock *lock = [[NSLock alloc] init];
[lock lock];
[lock unlock];
直接进入NSLock定义查看,其遵循了NSLocking协议,下面来探索NSLock的底层实现
2.4.1 NSLock 底层分析
- 通过加符号断点lock分析,发现其源码在Foundation框架中
- 由于OC的Foundation框架不开源,所以这里借助Swift的开源框架Foundation来 分析NSLock的底层实现,其原理与OC是大致相同的
通过源码实现可以看出,底层是通过pthread_mutex互斥锁实现的。并且在init方法中,还做了一些其他操作,所以在使用NSLock时需要使用init初始化
open class NSLock: NSObject, NSLocking {
internal var mutex = _MutexPointer.allocate(capacity: 1)
#if os(macOS) || os(iOS) || os(Windows)
private var timeoutCond = _ConditionVariablePointer.allocate(capacity: 1)
private var timeoutMutex = _MutexPointer.allocate(capacity: 1)
#endif
public override init() {
#if os(Windows)
InitializeSRWLock(mutex)
InitializeConditionVariable(timeoutCond)
InitializeSRWLock(timeoutMutex)
#else
pthread_mutex_init(mutex, nil)
#if os(macOS) || os(iOS)
pthread_cond_init(timeoutCond, nil)
pthread_mutex_init(timeoutMutex, nil)
#endif
#endif
}
deinit {
#if os(Windows)
// SRWLocks do not need to be explicitly destroyed
#else
pthread_mutex_destroy(mutex)
#endif
mutex.deinitialize(count: 1)
mutex.deallocate()
#if os(macOS) || os(iOS) || os(Windows)
deallocateTimedLockData(cond: timeoutCond, mutex: timeoutMutex)
#endif
}
open func lock() {
#if os(Windows)
AcquireSRWLockExclusive(mutex)
#else
pthread_mutex_lock(mutex)
#endif
}
open func unlock() {
#if os(Windows)
ReleaseSRWLockExclusive(mutex)
AcquireSRWLockExclusive(timeoutMutex)
WakeAllConditionVariable(timeoutCond)
ReleaseSRWLockExclusive(timeoutMutex)
#else
pthread_mutex_unlock(mutex)
#if os(macOS) || os(iOS)
// Wakeup any threads waiting in lock(before:)
pthread_mutex_lock(timeoutMutex)
pthread_cond_broadcast(timeoutCond)
pthread_mutex_unlock(timeoutMutex)
#endif
#endif
}
open func `try`() -> Bool {
#if os(Windows)
return TryAcquireSRWLockExclusive(mutex) != 0
#else
return pthread_mutex_trylock(mutex) == 0
#endif
}
open func lock(before limit: Date) -> Bool {
#if os(Windows)
if TryAcquireSRWLockExclusive(mutex) != 0 {
return true
}
#else
if pthread_mutex_trylock(mutex) == 0 {
return true
}
#endif
#if os(macOS) || os(iOS) || os(Windows)
return timedLock(mutex: mutex, endTime: limit, using: timeoutCond, with: timeoutMutex)
#else
guard var endTime = timeSpecFrom(date: limit) else {
return false
}
return pthread_mutex_timedlock(mutex, &endTime) == 0
#endif
}
open var name: String?
}
2.4.2 NSLock 注意点
请问下面block嵌套block的代码中,会有什么问题?
NSLock *lock = [[NSLock alloc] init];
for (int i= 0; i<10000; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
static void (^testMethod)(int);
testMethod = ^(int value){
[lock lock];
if (value > 0) {
NSLog(@"current value = %d",value);
testMethod(value - 1);
}
};
testMethod(10);
[lock unlock];
});
}
2021-08-09 14:20:35.222562+0800 001---Lock [6511:215678] current value = 10
会出现一直等待的情况,主要是因为嵌套使用的递归,使用NSLock(简单的互斥锁,如果没有回来,会一直睡觉等待),即会存在一直加lock,等不到unlock 的堵塞情况
针对这种情况,可以使用以下方式解决
- 使用@synchronized
for (int i= 0; i<10000; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
static void (^testMethod)(int);
testMethod = ^(int value){
@synchronized (self) {
if (value > 0) {
NSLog(@"current value = %d",value);
testMethod(value - 1);
}
}
};
testMethod(10);
});
}
2021-08-09 14:24:00.023710+0800 001---Lock[6577:220562] current value = 10
2021-08-09 14:24:00.023818+0800 001---Lock[6577:220562] current value = 9
2021-08-09 14:24:00.023912+0800 001---Lock[6577:220562] current value = 8
2021-08-09 14:24:00.023982+0800 001---Lock[6577:220562] current value = 7
2021-08-09 14:24:00.024066+0800 001---Lock[6577:220562] current value = 6
2021-08-09 14:24:00.024135+0800 001---Lock[6577:220562] current value = 5
2021-08-09 14:24:00.024209+0800 001---Lock[6577:220562] current value = 4
2021-08-09 14:24:00.024279+0800 001---Lock[6577:220562] current value = 3
2021-08-09 14:24:00.024376+0800 001---Lock[6577:220562] current value = 2
2021-08-09 14:24:00.024451+0800 001---Lock[6577:220562] current value = 1
2021-08-09 14:24:00.024686+0800 001---Lock[6577:220565] current value = 10
2021-08-09 14:24:00.025028+0800 001---Lock[6577:220565] current value = 9
2021-08-09 14:24:00.025364+0800 001---Lock[6577:220565] current value = 8
2021-08-09 14:24:00.025722+0800 001---Lock[6577:220565] current value = 7
2021-08-09 14:24:00.025896+0800 001---Lock[6577:220565] current value = 6
2021-08-09 14:24:00.026102+0800 001---Lock[6577:220565] current value = 5
2021-08-09 14:24:00.026272+0800 001---Lock[6577:220565] current value = 4
2021-08-09 14:24:00.029742+0800 001---Lock[6577:220565] current value = 3
2021-08-09 14:24:00.029840+0800 001---Lock[6577:220565] current value = 2
2021-08-09 14:24:00.029923+0800 001---Lock[6577:220565] current value = 1
下面一直重复,省略
- 使用递归锁NSRecursiveLock
NSRecursiveLock *recursiveLock = [[NSRecursiveLock alloc] init];
for (int i= 0; i<10000; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
static void (^testMethod)(int);
[recursiveLock lock];
testMethod = ^(int value){
if (value > 0) {
NSLog(@"current value = %d",value);
testMethod(value - 1);
}
[recursiveLock unlock];
};
testMethod(10);
});
}
2021-08-09 14:27:54.077622+0800 001---Lock[6633:224276] current value = 10
2021-08-09 14:27:54.077736+0800 001---Lock[6633:224276] current value = 9
2021-08-09 14:27:54.077811+0800 001---Lock[6633:224276] current value = 8
2021-08-09 14:27:54.077882+0800 001---Lock[6633:224276] current value = 7
2021-08-09 14:27:54.077966+0800 001---Lock[6633:224276] current value = 6
2021-08-09 14:27:54.078067+0800 001---Lock[6633:224276] current value = 5
2021-08-09 14:27:54.078153+0800 001---Lock[6633:224276] current value = 4
2021-08-09 14:27:54.078235+0800 001---Lock[6633:224276] current value = 3
2021-08-09 14:27:54.078314+0800 001---Lock[6633:224276] current value = 2
2021-08-09 14:27:54.078392+0800 001---Lock[6633:224276] current value = 1
2021-08-09 14:27:54.078570+0800 001---Lock[6633:224308] current value = 10
2021-08-09 14:27:54.078798+0800 001---Lock[6633:224308] current value = 9
2021-08-09 14:27:54.079017+0800 001---Lock[6633:224308] current value = 8
2021-08-09 14:27:54.079266+0800 001---Lock[6633:224308] current value = 7
2021-08-09 14:27:54.079513+0800 001---Lock[6633:224308] current value = 6
2021-08-09 14:27:54.079739+0800 001---Lock[6633:224308] current value = 5
2021-08-09 14:27:54.079924+0800 001---Lock[6633:224308] current value = 4
2021-08-09 14:27:54.080122+0800 001---Lock[6633:224308] current value = 3
2021-08-09 14:27:54.083311+0800 001---Lock[6633:224308] current value = 2
2021-08-09 14:27:54.083420+0800 001---Lock[6633:224308] current value = 1
下面一直重复,省略
2.5 pthread_mutex
pthread_mutex就是互斥锁本身,当锁被占用,其他线程申请锁时,不会一直忙等待,而是阻塞线程并睡眠
// 导入头文件
#import <pthread.h>
// 全局声明互斥锁
pthread_mutex_t _lock;
// 初始化互斥锁
pthread_mutex_init(&_lock, NULL);
// 加锁
pthread_mutex_lock(&_lock);
// 这里做需要线程安全操作
// 解锁
pthread_mutex_unlock(&_lock);
// 释放锁
pthread_mutex_destroy(&_lock);
2.6 NSRecursiveLock
NSRecursiveLock在底层也是对pthread_mutex的封装,可以通过swift的Foundation源码查看
open class NSRecursiveLock: NSObject, NSLocking {
internal var mutex = _RecursiveMutexPointer.allocate(capacity: 1)
#if os(macOS) || os(iOS) || os(Windows)
private var timeoutCond = _ConditionVariablePointer.allocate(capacity: 1)
private var timeoutMutex = _MutexPointer.allocate(capacity: 1)
#endif
public override init() {
super.init()
#if os(Windows)
InitializeCriticalSection(mutex)
InitializeConditionVariable(timeoutCond)
InitializeSRWLock(timeoutMutex)
#else
#if CYGWIN
var attrib : pthread_mutexattr_t? = nil
#else
var attrib = pthread_mutexattr_t()
#endif
withUnsafeMutablePointer(to: &attrib) { attrs in
pthread_mutexattr_init(attrs)
pthread_mutexattr_settype(attrs, Int32(PTHREAD_MUTEX_RECURSIVE))
pthread_mutex_init(mutex, attrs)
}
#if os(macOS) || os(iOS)
pthread_cond_init(timeoutCond, nil)
pthread_mutex_init(timeoutMutex, nil)
#endif
#endif
}
deinit {
#if os(Windows)
DeleteCriticalSection(mutex)
#else
pthread_mutex_destroy(mutex)
#endif
mutex.deinitialize(count: 1)
mutex.deallocate()
#if os(macOS) || os(iOS) || os(Windows)
deallocateTimedLockData(cond: timeoutCond, mutex: timeoutMutex)
#endif
}
open func lock() {
#if os(Windows)
EnterCriticalSection(mutex)
#else
pthread_mutex_lock(mutex)
#endif
}
open func unlock() {
#if os(Windows)
LeaveCriticalSection(mutex)
AcquireSRWLockExclusive(timeoutMutex)
WakeAllConditionVariable(timeoutCond)
ReleaseSRWLockExclusive(timeoutMutex)
#else
pthread_mutex_unlock(mutex)
#if os(macOS) || os(iOS)
// Wakeup any threads waiting in lock(before:)
pthread_mutex_lock(timeoutMutex)
pthread_cond_broadcast(timeoutCond)
pthread_mutex_unlock(timeoutMutex)
#endif
#endif
}
open func `try`() -> Bool {
#if os(Windows)
return TryEnterCriticalSection(mutex)
#else
return pthread_mutex_trylock(mutex) == 0
#endif
}
open func lock(before limit: Date) -> Bool {
#if os(Windows)
if TryEnterCriticalSection(mutex) {
return true
}
#else
if pthread_mutex_trylock(mutex) == 0 {
return true
}
#endif
#if os(macOS) || os(iOS) || os(Windows)
return timedLock(mutex: mutex, endTime: limit, using: timeoutCond, with: timeoutMutex)
#else
guard var endTime = timeSpecFrom(date: limit) else {
return false
}
return pthread_mutex_timedlock(mutex, &endTime) == 0
#endif
}
open var name: String?
}
对比NSLock 和 NSRecursiveLock,其底层实现几乎一模一样,区别在于init时,NSRecursiveLock有一个标识PTHREAD_MUTEX_RECURSIVE,而NSLock是默认的

递归锁主要是用于解决一种嵌套形式,其中循环嵌套居多
2.7 NSCondition
NSCondition 是一个条件锁,在日常开发中使用较少,与信号量有点相似:线程1需要满足条件1才会往下走,否则会堵塞等待,知道条件满足。经典模型是生产消费者模型
NSCondition的对象实际上作为一个锁 和 一个线程检查器
- 锁主要 为了当检测条件时保护数据源,执行条件引发的任务
- 线程检查器主要是根据条件决定是否继续运行线程,即线程是否被阻塞
//初始化
NSCondition *condition = [[NSCondition alloc] init]
//一般用于多线程同时访问、修改同一个数据源,保证在同一 时间内数据源只被访问、修改一次,其他线程的命令需要在lock 外等待,只到 unlock ,才可访问
[condition lock];
//与lock 同时使用
[condition unlock];
//让当前线程处于等待状态
[condition wait];
//CPU发信号告诉线程不用在等待,可以继续执行
[condition signal];
2.7.1 底层分析
通过swift的Foundation源码查看NSCondition的底层实现
open class NSCondition: NSObject, NSLocking {
internal var mutex = _MutexPointer.allocate(capacity: 1)
internal var cond = _ConditionVariablePointer.allocate(capacity: 1)
//初始化
public override init() {
pthread_mutex_init(mutex, nil)
pthread_cond_init(cond, nil)
}
//析构
deinit {
pthread_mutex_destroy(mutex)
pthread_cond_destroy(cond)
mutex.deinitialize(count: 1)
cond.deinitialize(count: 1)
mutex.deallocate()
cond.deallocate()
}
//加锁
open func lock() {
pthread_mutex_lock(mutex)
}
//解锁
open func unlock() {
pthread_mutex_unlock(mutex)
}
//等待
open func wait() {
pthread_cond_wait(cond, mutex)
}
//等待
open func wait(until limit: Date) -> Bool {
guard var timeout = timeSpecFrom(date: limit) else {
return false
}
return pthread_cond_timedwait(cond, mutex, &timeout) == 0
}
//信号,表示等待的可以执行了
open func signal() {
pthread_cond_signal(cond)
}
//广播
open func broadcast() {
// 汇编分析 - 猜 (多看多玩)
pthread_cond_broadcast(cond) // wait signal
}
open var name: String?
}
其底层也是对下层pthread_mutex的封装
- NSCondition是对mutex和cond的一种封装(cond就是用于访问和操作特定类型数据的指针)
- wait操作会阻塞线程,使其进入休眠状态,直至超时
- signal操作是唤醒一个正在休眠等待的线程
- broadcast会唤醒所有正在等待的线程
2.8 NSConditionLock
- NSConditionLock是条件锁,一旦一个线程获得锁,其他线程一定等待
- 相比NSConditionLock而言,NSCondition使用比较麻烦,所以推荐使用NSConditionLock,其使用如下
//初始化
NSConditionLock *conditionLock = [[NSConditionLock alloc] initWithCondition:2];
//表示 conditionLock 期待获得锁,如果没有其他线程获得锁(不需要判断内部的 condition) 那它能执行此行以下代码,如果已经有其他线程获得锁(可能是条件锁,或者无条件 锁),则等待,直至其他线程解锁
[conditionLock lock];
//表示如果没有其他线程获得该锁,但是该锁内部的 condition不等于A条件,它依然不能获得锁,仍然等待。如果内部的condition等于A条件,并且 没有其他线程获得该锁,则进入代码区,同时设置它获得该锁,其他任何线程都将等待它代码的 完成,直至它解锁。
[conditionLock lockWhenCondition:A条件];
//表示释放锁,同时把内部的condition设置为A条件
[conditionLock unlockWithCondition:A条件];
// 表示如果被锁定(没获得 锁),并超过该时间则不再阻塞线程。但是注意:返回的值是NO,它没有改变锁的状态,这个函 数的目的在于可以实现两种状态下的处理
return = [conditionLock lockWhenCondition:A条件 beforeDate:A时间];
//其中所谓的condition就是整数,内部通过整数比较条件
NSConditionLock,其本质就是NSCondition + Lock,以下是其swift的底层实现,
open class NSConditionLock : NSObject, NSLocking {
internal var _cond = NSCondition()
internal var _value: Int
internal var _thread: _swift_CFThreadRef?
public convenience override init() {
self.init(condition: 0)
}
public init(condition: Int) {
_value = condition
}
open func lock() {
let _ = lock(before: Date.distantFuture)
}
open func unlock() {
_cond.lock()
_thread = nil
_cond.broadcast()
_cond.unlock()
}
open var condition: Int {
return _value
}
open func lock(whenCondition condition: Int) {
let _ = lock(whenCondition: condition, before: Date.distantFuture)
}
open func `try`() -> Bool {
return lock(before: Date.distantPast)
}
open func tryLock(whenCondition condition: Int) -> Bool {
return lock(whenCondition: condition, before: Date.distantPast)
}
open func unlock(withCondition condition: Int) {
_cond.lock()
_thread = nil
_value = condition
_cond.broadcast()
_cond.unlock()
}
open func lock(before limit: Date) -> Bool {
_cond.lock()
while _thread != nil {
if !_cond.wait(until: limit) {
_cond.unlock()
return false
}
}
_thread = pthread_self()
_cond.unlock()
return true
}
open func lock(whenCondition condition: Int, before limit: Date) -> Bool {
_cond.lock()
while _thread != nil || _value != condition {
if !_cond.wait(until: limit) {
_cond.unlock()
return false
}
}
_thread = pthread_self()
_cond.unlock()
return true
}
open var name: String?
}
通过源码可以看出
- NSConditionLock是NSCondition的封装
- NSConditionLock可以设置锁条件,即condition值,而NSCondition只是信号的通知
2.9 性能
int ypy_runTimes = 100000;
/** OSSpinLock 性能 */
{
OSSpinLock ypy_spinlock = OS_SPINLOCK_INIT;
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
OSSpinLockLock(&ypy_spinlock); //解锁
OSSpinLockUnlock(&ypy_spinlock);
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"OSSpinLock: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** dispatch_semaphore_t 性能 */
{
dispatch_semaphore_t ypy_sem = dispatch_semaphore_create(1);
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
dispatch_semaphore_wait(ypy_sem, DISPATCH_TIME_FOREVER);
dispatch_semaphore_signal(ypy_sem);
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"dispatch_semaphore_t: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** os_unfair_lock_lock 性能 */
{
os_unfair_lock ypy_unfairlock = OS_UNFAIR_LOCK_INIT;
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
os_unfair_lock_lock(&ypy_unfairlock);
os_unfair_lock_unlock(&ypy_unfairlock);
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"os_unfair_lock_lock: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** pthread_mutex_t 性能 */
{
pthread_mutex_t ypy_metext = PTHREAD_MUTEX_INITIALIZER;
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
pthread_mutex_lock(&ypy_metext);
pthread_mutex_unlock(&ypy_metext);
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"pthread_mutex_t: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** NSlock 性能 */
{
NSLock *ypy_lock = [NSLock new];
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
[ypy_lock lock];
[ypy_lock unlock];
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"NSlock: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** NSCondition 性能 */
{
NSCondition *ypy_condition = [NSCondition new];
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
[ypy_condition lock];
[ypy_condition unlock];
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"NSCondition: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** PTHREAD_MUTEX_RECURSIVE 性能 */
{
pthread_mutex_t ypy_metext_recurive;
pthread_mutexattr_t attr;
pthread_mutexattr_init (&attr);
pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init (&ypy_metext_recurive, &attr);
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
pthread_mutex_lock(&ypy_metext_recurive);
pthread_mutex_unlock(&ypy_metext_recurive);
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"PTHREAD_MUTEX_RECURSIVE: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** NSRecursiveLock 性能 */
{
NSRecursiveLock *ypy_recursiveLock = [NSRecursiveLock new];
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
[ypy_recursiveLock lock];
[ypy_recursiveLock unlock];
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"NSRecursiveLock: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** NSConditionLock 性能 */
{
NSConditionLock *ypy_conditionLock = [NSConditionLock new];
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
[ypy_conditionLock lock];
[ypy_conditionLock unlock];
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"NSConditionLock: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
/** @synchronized 性能 */
{
double_t ypy_beginTime = CFAbsoluteTimeGetCurrent();
for (int i=0 ; i < ypy_runTimes; i++) {
@synchronized(self) {}
}
double_t ypy_endTime = CFAbsoluteTimeGetCurrent() ;
NSLog(@"@synchronized: %f ms",(ypy_endTime - ypy_beginTime)*1000);
}
输出结果
OSSpinLock: 0.797033 ms
dispatch_semaphore_t: 1.071095 ms
os_unfair_lock_lock: 0.856996 ms
pthread_mutex_t: 0.962973 ms
NSlock: 1.366019 ms
NSCondition: 1.330018 ms
PTHREAD_MUTEX_RECURSIVE: 2.380013 ms
NSRecursiveLock: 2.086997 ms
NSConditionLock: 6.044030 ms
@synchronized: 2.943993 ms
2.9.1 性能对比 iPhone 12 真机

2.9.2 总结
-
OSSpinLock自旋锁由于安全性问题,在iOS10之后已经被废弃,其底层的实现用os_unfair_lock替代
-
使用OSSpinLock及所示,会处于忙等待状态 - 而os_unfair_lock是处于休眠状态 - atomic原子锁自带一把自旋锁,只能保证setter、getter时的线程安全,在日常开发中使用更多的还是nonatomic修饰属性
-
atomic:当属性在调用setter、getter方法时,会加上自旋锁osspinlock,用于保证同一时刻只能有一个线程调用属性的读或写,避免了属性读写不同步的问题。由于是底层编译器自动生成的互斥锁代码,会导致效率相对较低
-
nonatomic:当属性在调用setter、getter方法时,不会加上自旋锁,即线程不安全。由于编译器不会自动生成互斥锁代码,可以提高效率
-
@synchronized在底层维护了一个哈希表进行线程data的存储,通过链表表示可重入(即嵌套)的特性,虽然性能较低,但由于简单好用,使用频率很高
-
NSLock、NSRecursiveLock底层是对pthread_mutex的封装 - NSCondition和NSConditionLock是条件锁,底层都是对pthread_mutex的封装,当满足某一个条件时才能进行操作,和信号量dispatch_semaphore类似
2.10 锁的使用建议
- 如果只是简单的使用,例如涉及线程安全,使用NSLock即可
- 如果是循环嵌套,推荐使用@synchronized,主要是因为使用递归锁的 性能 不如 使用@synchronized的性能(因为在synchronized中无论怎么重入,都没有关系,而NSRecursiveLock可能会出现崩溃现象)
- 在循环嵌套中,如果对递归锁掌握的很好,则建议使用递归锁,因为性能好
- 如果是循环嵌套,并且还有多线程影响时,例如有等待、死锁现象时,建议使用@synchronized
公众号
🌹 觉得有收获的,可以来一波,点赞+收藏+关注,评论 + 转发,以免你下次找不到我😁🌹
🌹 欢迎关注公众号,公众号也会发布iOS技术文章,微信扫码👇🏻 微信公众号图片即可