阅读 53

【语音识别】基于matlab GUI声纹识别【含Matlab源码 1022期】

一、简介

本文基于Matlab设计实现了一个文本相关的声纹识别系统,可以判定说话人身份。
1 系统原理
a.声纹识别
这两年随着人工智能的发展,不少手机App都推出了声纹锁的功能。这里面所采用的主要就是声纹识别相关的技术。声纹识别又叫说话人识别,它和语音识别存在一点差别。
在这里插入图片描述
b.梅尔频率倒谱系数(MFCC)
梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient, MFCC)是语音信号处理中最常用的语音信号特征之一。
实验观测发现人耳就像一个滤波器组一样,它只关注频谱上某些特定的频率。人耳的声音频率感知范围在频谱上的不遵循线性关系,而是在Mel频域上遵循近似线性关系。
梅尔频率倒谱系数考虑到了人类的听觉特征,先将线性频谱映射到基于听觉感知的Mel非线性频谱中,然后转换到倒谱上。普通频率转换到梅尔频率的关系式为:
在这里插入图片描述
c.矢量量化(VectorQuantization)
本系统利用矢量量化对提取的语音MFCC特征进行压缩。
VectorQuantization (VQ)是一种基于块编码规则的有损数据压缩方法。事实上,在 JPEG 和 MPEG-4 等多媒体压缩格式里都有 VQ 这一步。它的基本思想是:将若干个标量数据组构成一个矢量,然后在矢量空间给以整体量化,从而压缩了数据而不损失多少信息。
3 系统结构
本文整个系统的结构如下图:
–训练过程
首先对语音信号进行预处理,之后提取MFCC特征参数,利用矢量量化方法进行压缩,得到说话人发音的码本。同一说话人多次说同一内容,重复该训练过程,最终形成一个码本库。
–识别过程
在识别时,同样先对语音信号预处理,提取MFCC特征,比较本次特征和训练库码本之间的欧氏距离。当小于某个阈值,我们认定本次说话的说话人及说话内容与训练码本库中的一致,配对成功。
在这里插入图片描述

二、源代码

function varargout = GUI(varargin)
% GUI MATLAB code for GUI.fig
%      GUI, by itself, creates a new GUI or raises the existing
%      singleton*.
%
%      H = GUI returns the handle to a new GUI or the handle to
%      the existing singleton*.
%
%      GUI('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in GUI.M with the given input arguments.
%
%      GUI('Property','Value',...) creates a new GUI or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before GUI_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to GUI_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help GUI

% Last Modified by GUIDE v2.5 15-Mar-2021 17:37:45

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @GUI_OpeningFcn, ...
                   'gui_OutputFcn',  @GUI_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before GUI is made visible.
function GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to GUI (see VARARGIN)

% Choose default command line output for GUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = GUI_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
fprintf('\n识别中...\n\n');
%加载训练好的GMM模型
load speakerData;
load speakerGmm;

waveDir='trainning\';  %导入测试集
Test_speakerData = dir(waveDir);   %获取测试集中的结构体数据,这是一个char类型的结构体
Test_speakerData(1:2) = [];
Test_speakerNum=length(Test_speakerData);
Test_speakerNum
count=0;
%%%%%%%%%%%%%%%%for i=1:Test_speakerNum
%%%读取语音
[filename,filepath]=uigetfile('*.wav','选择音频文件');
set(handles.text1,'string',filepath)
   filep=strcat(filepath,filename); 
[testing_data, fs]=audioread(filep);
sound(testing_data, fs);
save testing_data
load testing_data
y=testing_data
axes(handles.axes1)
plot(y);
xlabel('t');ylabel('幅值');
title('时域图');
%频域
%幅频图
N=length(y);   
fs1=100;  %采样频率
n=0:N-1;
t=n/fs;   %时间序列
yfft =fft(y,N);
mag=abs(yfft);     %取振幅的绝对值
f=n*fs/N;    %频率序列
axes(handles.axes2)
plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('频域图');

%相谱
A=abs(yfft);
ph=2*angle(yfft(1:N/2));
ph=ph*180/pi;
axes(handles.axes3);
plot(f(1:N/2),ph(1:N/2));
xlabel('频率/hz'),ylabel('相角'),title('数字0-9的相位谱');
% 绘制功率谱
Fs=1000;
n=0:1/Fs:1;
xn=y;
nfft=1024;
window=boxcar(length(n)); %矩形窗
noverlap=0; %数据无重叠
p=0.9; %置信概率
[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot_Pxxc=10*log10(Pxxc(index+1));
axes(handles.axes4)
plot(k,plot_Pxx);
title('数字0-9的功率谱');

axes(handles.axes5)
surf( speakerData(1).mfcc);  %绘制MFCC的三维图
title('第一个人语音的三维MFCC');   %第一个人说话的mfcc的特征   mfcc是指梅尔倒谱系数

%绘制第一个人的MFCC的全部二维图
axes(handles.axes6)
for i=1:speakerNum
	fprintf('\n为第%d个语者%s训练GMM……', i,speakerData(i).name(1:end-4));
	[speakerGmm(i).mu, speakerGmm(i).sigm,speakerGmm(i).c] = gmm_estimate(speakerData(i).mfcc(:,5:12)',gaussianNum,20);  %转置正确
 
end

fprintf('\n');
save speakerGmm speakerGmm;   %保存样本GMM
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
clc
close all
% hObject    handle to pushbutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
复制代码

三、运行结果

在这里插入图片描述
在这里插入图片描述

四、备注

版本:2014a

文章分类
人工智能
文章标签