【情感识别】基于matlab PNN概率神经网络语音情感识别【含Matlab源码 544期】

372 阅读4分钟

一、简介

1 概述
在这里插入图片描述
1.1 模式分类的贝叶斯决策理论
在这里插入图片描述
在这里插入图片描述
2 概率神经网路的网络结构(PNN)
在这里插入图片描述
总结:
1、输入层接收样本的值,神经元个数与输入向量长度相等。
2、隐藏层为径向基层,每个神经元对应一个中心(对应一个样本数据)。
3、输入数据分为了i类,因为PNN就是用来分类的,就是先用样本训练网络,然后输入数据,用此网络来鉴别,是属于哪一类数据。
4、上式Xij其实与RBF神经网络一致,就是求每个输入与样本的欧式距离,只不过此隐藏层把数据分为了i个类,并且设第i个类有j个数据。
5、然后下图可以看出,求和层的神经元个数与数据分类的个数相等,此求和层求得上式中,每类数据的平均值。
6、然后比较每一类平均值的大小,把此数据分类到值最大的那一类。
7、下文中,提出在实际计算中,用来理解的公式与实际计算中公式不同,
在这里插入图片描述
注意:上边的求和层的神经元个数与模式分类的个数相等。也就是说只有对应类别的样本( 隐藏层的神经元)连接, 不与其他无关的样本连接。

3 概率神经网络的优点
在这里插入图片描述

二、源代码

lc 
close all
clear all
load A_fear fearVec;
load F_happiness hapVec;
load N_neutral neutralVec;
load T_sadness sadnessVec;
load W_anger angerVec;
 trainsample(1:30,1:140)=angerVec(:,1:30)';
 trainsample(31:60,1:140)=hapVec(:,1:30)';
 trainsample(61:90,1:140)=neutralVec(:,1:30)';
 trainsample(91:120,1:140)=sadnessVec(:,1:30)';
 trainsample(121:150,1:140)=fearVec(:,1:30)';
  trainsample(1:30,141)=1;
   trainsample(31:60,141)=2;
   trainsample(61:90,141)=3;
   trainsample(91:120,141)=4; 
   trainsample(121:150,141)=5;
   testsample(1:20,1:140)=angerVec(:,31:50)';
  testsample(21:40,1:140)=hapVec(:,31:50)';
 testsample(41:60,1:140)=neutralVec(:,31:50)';
  testsample(61:80,1:140)=sadnessVec(:,31:50)';
  testsample(81:100,1:140)=fearVec(:,31:50)';
  testsample(1:20,141)=1;
   testsample(21:40,141)=2;
    testsample(41:60,141)=3;
    testsample(61:80,141)=4; 
    testsample(81:100,141)=5;
  class=trainsample(:,141);
sum=bpnn(trainsample,testsample,class);
figure(1)
bar(sum,0.5);
set(gca,'XTickLabel',{'生气','高兴','中性','悲伤','害怕'});
ylabel('识别率');
xlabel('五种基本情感');

p_train=trainsample(:,1:140)';
t_train=trainsample(:,141)';
p_test=testsample(:,1:140)';
t_test=testsample(:,141)';
sumpnn=pnn(p_train,t_train,p_test,t_test);
figure(2)
bar(sumpnn,0.5);
set(gca,'XTickLabel',{'生气','高兴','中性','悲伤','害怕'});
ylabel('识别率');
xlabel('五种基本情感');
sumlvq=lvq(trainsample,testsample,class);
function sum=bpnn(trainsample,testsample,class)
%输入参数:trainsample是训练样本,testsample是测试样本,class表示训练样本的类别,与trainsample中数据对应
%sum:五种基本情感的识别率
for i=1:140
    feature(:,i)= trainsample(:,i);
end
%特征值归一化
[input,minI,maxI] = premnmx( feature')  ;

%构造输出矩阵
s = length( class ) ;
output = zeros( s , 5  ) ;
for i = 1 : s 
   output( i , class( i )  ) = 1 ;
end

%创建神经网络
net = newff( minmax(input) , [10 5] , { 'logsig' 'purelin' } , 'traingdx' ) ;   %创建前馈神经网络

%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 150 ;
net.trainparam.goal = 0.1 ;
net.trainParam.lr = 0.05 ;

%开始训练
net = train( net, input , output' ) ;

%读取测试数据
for i=1:140
    featuretest(:,i)= testsample(:,i);
end
 c=testsample(:,141);
%测试数据归一化
testInput = tramnmx(featuretest' , minI, maxI ) ;

%仿真
Y = sim( net , testInput ) 
sum=[0 0 0 0 0]; %每类情感正确识别个数
%统计识别正确样本数 
for i=1:20
    if Y(1,i)>Y(2,i)&&Y(1,i)>Y(3,i)&&Y(1,i)>Y(4,i)&&Y(1,i)>Y(5,i)
        sum(1)=sum(1)+1;
    end
    function sumlvq=lvq(trainsample,testsample,class)
P=trainsample(:,1:140)';
C=class';
T=ind2vec(C);
net=newlvq(minmax(P),20,[0.2 0.2 0.2 0.2 0.2],0.1); %创建lvq网络
w1=net.IW{1};
net.trainParam.epochs=100;
net=train(net,P,T);
y=sim(net,testsample(:,1:140)');
y3c=vec2ind(y);
sumlvq=[0 0 0 0 0]; %每类情感正确识别个数
%统计识别正确样本数 
for i=1:20
    if y3c(i)==1
        sumlvq(1)=sumlvq(1)+1;
    end
end
for i=21:40
    if y3c(i)==2
        sumlvq(2)=sumlvq(2)+1;
    end
end
for i=41:60
    if y3c(i)==3
        sumlvq(3)=sumlvq(3)+1;
    end
end
for i=61:80
    if y3c(i)==4
        sumlvq(4)=sumlvq(4)+1;
    end
end
for i=81:100
end

三、运行结果

在这里插入图片描述
在这里插入图片描述

四、备注

版本:2014a