【高等数学】坐标系变换下的二阶偏导数求解

680 阅读1分钟

已知:u=f(x,y)u=f(x,y)有二阶连续偏导数,计算2ux22uy2\frac{\partial^2 u}{\partial x^2}-\frac{\partial^2 u}{\partial y^2}在新的坐标系下对应的表达式。

{s=x+yt=xy\left\{\begin{aligned}s & = & x+y \\t & = & x-y \\\end{aligned}\right.

这道偏导数的题实质上是利用中间变量求导,在书写的过程中容易出错,写一个解答过程,也算是一次markdown语法编辑的练习了


对于变换坐标系:

sx=tx=1,\begin{aligned} \frac{\partial s}{\partial x}=\frac{\partial t}{\partial x} &=1 , \end{aligned} sy=1,ty=1.\begin{aligned} \frac{\partial s}{\partial y}&=1 ,\\ \frac{\partial t}{\partial y}&=-1. \end{aligned}


ux=ussx+uttx=us+ut.\begin{aligned} \frac{\partial u}{\partial x} &=\frac{\partial u}{\partial s}\frac{\partial s}{\partial x}+\frac{\partial u}{\partial t}\frac{\partial t}{\partial x} \\ &=\frac{\partial u}{\partial s}+\frac{\partial u}{\partial t}. \end{aligned}

2ux2=x(ux)=x(us+ut)=xus+xut=sussx+tustx+sutsx+tuttx=us2+22ust+ut2.\begin{aligned} \frac{\partial ^2u}{\partial x^2}&=\frac{\partial }{\partial x}(\frac{\partial u}{\partial x}) \\ &=\frac{\partial }{\partial x}(\frac{\partial u}{\partial s}+\frac{\partial u}{\partial t})\\ &=\frac{\partial }{\partial x}\frac{\partial u}{\partial s}+\frac{\partial }{\partial x}\frac{\partial u}{\partial t}\\ &=\frac{\partial }{\partial s}\frac{\partial u}{\partial s}\frac{\partial s}{\partial x}+\frac{\partial }{\partial t}\frac{\partial u}{\partial s}\frac{\partial t}{\partial x}+\frac{\partial }{\partial s}\frac{\partial u}{\partial t}\frac{\partial s}{\partial x}+\frac{\partial }{\partial t }\frac{\partial u}{\partial t}\frac{\partial t}{\partial x}\\ &=\frac{\partial u}{\partial s^2 }+2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }.\\ \end{aligned}


由于代码编辑量较大...所以同理可得 算了,还是老老实实写完整过程,因为中间出现的负号容易出错...

uy=ussy+utty=usut.\begin{aligned} \frac{\partial u}{\partial y} &=\frac{\partial u}{\partial s}\frac{\partial s}{\partial y}+\frac{\partial u}{\partial t}\frac{\partial t}{\partial y} \\ &=\frac{\partial u}{\partial s}-\frac{\partial u}{\partial t}. \end{aligned}

2uy2=y(uy)=y(usut)=yusyut=sussy+tustysutsytutty=us222ust+ut2.\begin{aligned} \frac{\partial ^2u}{\partial y^2}&=\frac{\partial }{\partial y}(\frac{\partial u}{\partial y}) \\ &=\frac{\partial }{\partial y}(\frac{\partial u}{\partial s}-\frac{\partial u}{\partial t})\\ &=\frac{\partial }{\partial y}\frac{\partial u}{\partial s}-\frac{\partial }{\partial y}\frac{\partial u}{\partial t}\\ &=\frac{\partial }{\partial s}\frac{\partial u}{\partial s}\frac{\partial s}{\partial y}+\frac{\partial }{\partial t}\frac{\partial u}{\partial s}\frac{\partial t}{\partial y}-\frac{\partial }{\partial s}\frac{\partial u}{\partial t}\frac{\partial s}{\partial y}-\frac{\partial }{\partial t }\frac{\partial u}{\partial t}\frac{\partial t}{\partial y}\\ &=\frac{\partial u}{\partial s^2 }-2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }.\\ \end{aligned}

2uy2=us222ust+ut2.\begin{aligned} \frac{\partial ^2u}{\partial y^2}&=\frac{\partial u}{\partial s^2 }-2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }. \end{aligned}

则在变换坐标系下有: {2ux2=us2+22ust+ut2,2uy2=us222ust+ut2.\left\{\begin{aligned}\frac{\partial ^2u}{\partial x^2} & = \frac{\partial u}{\partial s^2 }+2\frac{\partial ^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2}, \\\frac{\partial ^2u}{\partial y^2} & = \frac{\partial u}{\partial s^2}-2\frac{\partial^2u}{\partial s \partial t}+\frac{\partial u}{\partial t^2 }. \\\end{aligned}\right.

综合上述计算结果可得:

2ux22uy2=42ust.\begin{aligned}\frac{\partial ^2u}{\partial x^2}-\frac{\partial ^2u}{\partial y^2}&=4\frac{\partial ^2u}{\partial s \partial t} .\end{aligned}