阅读 49

结构结构&算法-时间空间复杂度分析笔记

这是我参与更文挑战的第9天,活动详情查看: 更文挑战

时间空间复杂度分析笔记

什么是复杂度分析?

数据结构和算法解决的是如何更省、更快地存储和处理数据的问题,因此,我们就需要一个考量效率和资源消耗的方法,这就是复杂度分析方法。

大O复杂度表示法

算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?这里有段非常简单的代码,求 1,2,3…n 的累加和。现在,我就带你一块来估算一下这段代码的执行时间。

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }
复制代码

假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 *(2n+2)unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。表示方法图所示

img

大O时间复杂度表示法。大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

我们在分析时间复杂度的时候往往遵循以下原则:

1.只关注循环执行次数最多的一段代码

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }
复制代码

其中第2、3行代码都是常量级的执行时间,与n的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第4、5行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了n次,所以总的时间复杂度就是O(n)。

2.加法法则:总复杂度等于量级最大的那段代码的复杂度

3.乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

因此,如果分析某个算法的时间复杂度是 T(n) = O(2n+2) / T(n) = O(2n^2 +2n+3),则公式中的低阶、常量、系数三部分都可以忽略,即:T(n) = O(n) / T(n) = O(n^2)。

img

1. O(1)

一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)

2. O(logn)、O(nlogn)

 i=1;

 while (i <= n)  {

   i = i * 2;

 }
复制代码

从代码中可以看出,变量i的值从1开始取,每循环一次就乘以2。当大于n时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量i的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

img

现在,把代码稍微改下,这段代码的时间复杂度是多少?

 i=1;
 while (i <= n)  {
   i = i * 3;
 }
复制代码

这段代码的时间复杂度为O(log3n)。

空间复杂度分析

空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系

一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面

算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地"进行的,是节省存储的算法,有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况。

一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。若一个算法为 [2] 递归算法,其空间复杂度为递归所使用的堆栈空间的大小,它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表示开始进行的一次非递归调用)。算法的空间复杂度一般也以数量级的形式给出。如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空间复杂度与n成线性比例关系时,可表示为O(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。

我们常见的空间复杂度就是O(1)、O(n)、O(n2 ),像O(logn)、O(nlogn)这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。

参考

baike.baidu.com/item/%E7%A9… blog.csdn.net/u012084802/… blog.csdn.net/yusirxiaer/…

文章分类
代码人生
文章标签