【术】数据结构与算法时间复杂度

785 阅读5分钟

这是我参与更文挑战的第7天,活动详情查看: 更文挑战

数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更加节省空间。

1.复杂度分析的必要性

如果不采用事前的复杂度预估分析,只有采取事后的统计法。事后统计即把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。

但事后统计有非常大的局限性:

  • 测试结果非常依赖环境(没有统一的标准)
  • 测试结果受数据规模,结构的影响很大(例如不同排序算法)

2.大O复杂度表示法

0076PAJ8gy1g1lzlyni95j30vh031q31.jpg

T(n)表示代码执行的时间,n表示数据规模大小,f(n)表示每行代码执行次数的总和。从上图公式可看出,代码的执行时间T(n)与f(n)表达式成正比。

大O时间复杂度实际上并不表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

而当n很大时候,公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可忽略,我们只需要记录一个最大量级就可以了。例如T(n) = O(n); T(n) = O(n²)

3.时间复杂度分析方法

  1. 只关注循环执行次数最多的一段代码
  2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
  3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

4.几种常见时间复杂度实例分析

0076PAJ8gy1g1m0a8mkxej30vq0fwjti.jpg

复杂度量级可粗略的分为:多项式量级非多项式量级

我们把时间复杂度为非多项式量级的算法问题叫作NP(Non-Deterministic Polynomial,非确定多项式)问题,非多项式量级只有两个:

  • O(2n)
  • O(n!)

总的来说:当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。

5.常见的多项式时间复杂度

1. O(1)

首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。

 int i = 8;
 int j = 6;
 int sum = i + j;

我稍微总结一下,只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)

2. O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

9b1c88264e7a1a20b5954be9bc4bec9a.jpg

所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。

现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?

 i=1;
 while (i <= n)  {
   i = i * 3;
 }

根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为 O(log3n)。

实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。为什么呢?

我们知道,对数之间是可以互相转换的,log3n 就等于 log32 * log2n,所以 O(log3n) = O(C * log2n),其中 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

如果你理解了我前面讲的 O(logn),那 O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

3. O(m+n)、O(m*n)

我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规矩,先看代码!

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }
 
  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }
 
  return sum_1 + sum_2;
}

从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。