Typescript是基于javascript的将其'弱'增强
准备阶段
- tsc 编译ts文件: tsc *.ts将ts文件编译成js文件,然后node去运行js文件
sudo npm install typescript -g // mac安装
tsc --version // 查看是否安装成功
复制代码
- ts-node 直接运行ts文件:ts-node *.ts == node *.js
sudo npm install ts-node -g // mac安装
复制代码
简单例子
function greet(person: string) {
console.log("Hello, " + person);
}
复制代码
基础类型
与Javascript一样只不过将首字母大写变为小写
number类型与js中Number一样都是浮点数。
TypeScript除了支持十进制和十六进制字面量,还支持ECMAScript 2015中引入的二进制和八进制字面量。
let decLiteral: number = 6;
let hexLiteral: number = 0xf00d;
let binaryLiteral: number = 0b1010;
let octalLiteral: number = 0o744;
复制代码
数组 T[]
有两种方式可以定义数组。
- 第一种,可以在元素类型后面接上 [],表示由此类型元素组成的一个数组:
let list: number[] = [1, 2, 3];
复制代码
- 第二种方式是使用数组泛型,Array<元素类型>:
let list: Array<number> = [1, 2, 3];
复制代码
元组 Tuple
// Declare a tuple type
let x: [string, number];
// Initialize it
x = ['hello', 10]; // OK
// Initialize it incorrectly
x = [10, 'hello']; // Error
复制代码
在Typescript2.7(FixedLengthTuples一节中)之后,Tuple的定义已经变成了有限制长度的数组了。
interface NumStrTupleextendsArray{
0:number;
1:string;
length:2;//usingthenumericliteraltype'2'
}
复制代码
所以你不能再越界访问了。
枚举 enum
enum
类型是对JavaScript标准数据类型的一个补充。 像C#等其它语言一样,使用枚举类型可以为一组数值赋予友好的名字。
enum Color {Red, Green, Blue}
let c: Color = Color.Green;
复制代码
默认情况下,从0开始为元素编号。 你也可以手动的指定成员的数值。 例如,我们将上面的例子改成从 1开始编号:
enum Color {Red = 1, Green, Blue}
let c: Color = Color.Green;
复制代码
enum Color {Red = 1, Green = 2, Blue = 4}
let c: Color = Color.Green;
复制代码
枚举类型提供的一个便利是你可以由枚举的值得到它的名字。
enum Color {Red = 1, Green, Blue}
let colorName: string = Color[2];
console.log(colorName); // 显示'Green'因为上面代码里它的值是2
复制代码
Any
有时候,我们会想要为那些在编程阶段还不清楚类型的变量指定一个类型。 这些值可能来自于动态的内容,比如来自用户输入或第三方代码库。 这种情况下,我们不希望类型检查器对这些值进行检查而是直接让它们通过编译阶段的检查。 那么我们可以使用 any
类型来标记这些变量:
let notSure: any = 4;
notSure = "maybe a string instead";
notSure = false; // okay, definitely a boolean
复制代码
与Object对比,Object类型的变量只是允许你给它赋任意值 - 但是却不能够在它上面调用任意的方法,即便它真的有这些方法:
let notSure: any = 4;
notSure.ifItExists(); // okay, ifItExists might exist at runtime
notSure.toFixed(); // okay, toFixed exists (but the compiler doesn't check)
let prettySure: Object = 4;
prettySure.toFixed(); // Error: Property 'toFixed' doesn't exist on type 'Object'.
复制代码
当你只知道一部分数据的类型时,any
类型也是有用的。 比如,你有一个数组,它包含了不同的类型的数据:
let list: any[] = [1, true, "free"];
list[1] = 100;
复制代码
Void
某种程度上来说,void
类型像是与any
类型相反,它表示没有任何类型。 当一个函数没有返回值时,你通常会见到其返回值类型是 void
:
function warnUser(): void {
console.log("This is my warning message");
}
复制代码
声明一个void
类型的变量没有什么大用,因为你只能为它赋予undefined
和null
:
let unusable: void = undefined;
复制代码
Null 和 Undefined
TypeScript里,undefined
和null
两者各自有自己的类型分别叫做undefined
和null
。 和 void
相似,它们的本身的类型用处不是很大:
// Not much else we can assign to these variables!
let u: undefined = undefined;
let n: null = null;
复制代码
默认情况下null
和undefined
是所有类型的子类型。 就是说你可以把 null
和undefined
赋值给number
类型的变量。
然而,当你指定了--strictNullChecks
标记,null
和undefined
只能赋值给void
和它们各自。 这能避免 很多常见的问题。 也许在某处你想传入一个 string
或null
或undefined
,你可以使用联合类型string | null | undefined
。
Never
never
类型表示的是那些永不存在的值的类型。 例如, never
类型是那些总是会抛出异常或根本就不会有返回值的函数表达式或箭头函数表达式的返回值类型; 变量也可能是 never
类型,当它们被永不为真的类型保护所约束时。
object
object
表示非原始类型,也就是除number
,string
,boolean
,symbol
,null
或undefined
之外的类型。
类型断言 <>/as
可以理解为java中的强制转换
类型断言有两种形式,
- 其一是“尖括号”语法:
let someValue: any = "this is a string";
let strLength: number = (<string>someValue).length;
复制代码
- 另一个为as语法:
let someValue: any = "this is a string";
let strLength: number = (someValue as string).length;
复制代码
接口
- js
function printLabel(labelledObj: { label: string }) {
console.log(labelledObj.label);
}
let myObj = { size: 10, label: "Size 10 Object" };
printLabel(myObj);
复制代码
- ts
interface LabelledValue {
label: string;
}
function printLabel(labelledObj: LabelledValue) {
console.log(labelledObj.label);
}
let myObj = {size: 10, label: "Size 10 Object"};
printLabel(myObj);
复制代码
类型检查器不会去检查属性的顺序,只要相应的属性存在并且类型也是对的就可以。
可选属性 ?
interface SquareConfig {
color?: string;
width?: number;
}
function createSquare(config: SquareConfig): {color: string; area: number} {
let newSquare = {color: "white", area: 100};
if (config.color) {
newSquare.color = config.color;
}
if (config.width) {
newSquare.area = config.width * config.width;
}
return newSquare;
}
let mySquare = createSquare({color: "black"});
复制代码
带有可选属性的接口与普通的接口定义差不多,只是在可选属性名字定义的后面加一个?
符号。
只读属性 readonly
一些对象属性只能在对象刚刚创建的时候修改其值。 你可以在属性名前用 readonly
来指定只读属性:
interface Point {
readonly x: number;
readonly y: number;
}
复制代码
可以通过赋值一个对象字面量来构造一个Point。 赋值后, x和y再也不能被改变了。
let p1: Point = { x: 10, y: 20 };
p1.x = 5; // error!
复制代码
TypeScript具有ReadonlyArray<T>
类型,它与Array<T>
相似,只是把所有可变方法去掉了,因此可以确保数组创建后再也不能被修改:
let a: number[] = [1, 2, 3, 4];
let ro: ReadonlyArray<number> = a;
ro[0] = 12; // error!
ro.push(5); // error!
ro.length = 100; // error!
a = ro; // error!
复制代码
上面代码的最后一行,可以看到就算把整个ReadonlyArray
赋值到一个普通数组也是不可以的。 但是你可以用类型断言重写:
a = ro as number[];
复制代码
额外的属性检查 []:any
interface SquareConfig {
color?: string;
width?: number;
}
function createSquare(config: SquareConfig): { color: string; width: number } {
// ...
}
let mySquare = createSquare({ colour: "red", width: 100 });
复制代码
这里createSquare
传入的对象属性如果多了,就会报错,采用下面这个方式就不会了:
interface SquareConfig {
color?: string;
width?: number;
[propName: string]: any;
}
function createSquare(config: SquareConfig): SquareConfig {
// ...
}
let mySquare = createSquare({ colour: "red", width: 100 });
let mySquare = createSquare({color:"#333",width:128,age:12,name:'test'})
复制代码
函数类型
interface SquareConfig {
color?: string;
width?: number;
}
function createSquare(config: SquareConfig): { color: string; width: number } {
// ...
}
let mySquare = createSquare({ colour: "red", width: 100 });
复制代码
继续以上面代码为例,这里的函数createSquare
传入的是config
类型定义是SquareConfig
,函数类型就类似于匿名函数了,如下:
interface SquareConfig {
(
color: string;
width: string;
):boolean;
}
let test = SquareConfig;
test = function(src: string, sub: string): boolean {
let result = src.search(sub);
return result > -1;
}
mySearch('123456','7') // false
mySearch('123456','2') // true
复制代码
可索引的类型 [x:string]:value
interface StringArray {
[index: number]: string;
}
let myArray: StringArray;
myArray = ["Bob", "Fred"];
let myStr: string = myArray[0];
复制代码
文档介绍是这样的:TypeScript支持两种索引签名:字符串和数字。 可以同时使用两种类型的索引,但是数字索引的返回值必须是字符串索引返回值类型的子类型。 这是因为当使用 number来索引时,JavaScript会将它转换成string然后再去索引对象。 也就是说用 100(一个number)去索引等同于使用"100"(一个string)去索引,因此两者需要保持一致。
class Animal {
name: string;
}
class Dog extends Animal {
breed: string;
}
// 错误:使用数值型的字符串索引,有时会得到完全不同的Animal!
interface NotOkay {
[x: number]: Animal;
[x: string]: Dog;
}
复制代码
在这里遇到一个对我来说的天坑
问题说明
- string索引
class Animal {
name: string;
}
class Dog extends Animal {
breed: string;
}
interface NotOkay {
[x: string]: Animal;
}
let str : NotOkay;
str = {a:{name:'an'},b:{name:'bo'}};
let strArr : NotOkay[];
strArr = [{a:{name:'an'},b:{name:'bo'}}];
console.log(str.a,strArr[0]); // {name:'an'} {a:{name:'an'},b:{name:'bo'}}
复制代码
- number索引
class Animal {
name: string;
}
class Dog extends Animal {
breed: string;
}
interface NotOkay {
[x: number]: Dog;
}
let num : NotOkay;
num = [{name:'an',breed:'an'},{name:'bo',breed:'bo'}];
console.log(str[0]) // {name:'an',breed:'an'}
复制代码
- 同时存在
问题说明:如下情况numberNotOkay是一直报错的,这里请教了很多人,最终的答案是可索引类型只用字符串类型
类类型
实现接口 interface
与C#或Java里接口的基本作用一样,TypeScript也能够用它来明确的强制一个类去符合某种契约。
interface ClockInterface {
currentTime: Date;
}
class Clock implements ClockInterface {
currentTime: Date;
constructor(h: number, m: number) { }
}
复制代码
也可以在接口中描述一个方法,在类里实现它,如同下面的setTime
方法一样:
interface ClockInterface {
currentTime: Date;
setTime(d: Date);
}
class Clock implements ClockInterface {
currentTime: Date;
setTime(d: Date) {
this.currentTime = d;
}
constructor(h: number, m: number) { }
}
复制代码
接口描述了类的公共部分,而不是公共和私有两部分。 它不会帮你检查类是否具有某些私有成员。
类静态部分与实例部分的区别
当你操作类和接口的时候,你要知道类是具有两个类型的:静态部分的类型和实例的类型。 你会注意到,当你用构造器签名去定义一个接口并试图定义一个类去实现这个接口时会得到一个错误:
interface ClockConstructor {
new (hour: number, minute: number);
}
class Clock implements ClockConstructor {
currentTime: Date;
constructor(h: number, m: number) { }
}
复制代码
这里因为当一个类实现了一个接口时,只对其实例部分进行类型检查。 constructor存在于类的静态部分,所以不在检查的范围内。
因此,我们应该直接操作类的静态部分。 看下面的例子,我们定义了两个接口, ClockConstructor为构造函数所用和ClockInterface为实例方法所用。 为了方便我们定义一个构造函数 createClock,它用传入的类型创建实例。
interface ClockConstructor {
new (hour: number, minute: number): ClockInterface;
}
interface ClockInterface {
tick();
}
function createClock(ctor: ClockConstructor, hour: number, minute: number): ClockInterface {
return new ctor(hour, minute);
}
class DigitalClock implements ClockInterface {
constructor(h: number, m: number) { }
tick() {
console.log("beep beep");
}
}
class AnalogClock implements ClockInterface {
constructor(h: number, m: number) { }
tick() {
console.log("tick tock");
}
}
let digital = createClock(DigitalClock, 12, 17);
let analog = createClock(AnalogClock, 7, 32);
console.log(digital.tick(),analog.tick());
// beep beep
// tick tock
复制代码
因为createClock
的第一个参数是ClockConstructor
类型,在createClock(AnalogClock, 7, 32)
里,会检查AnalogClock
是否符合构造函数签名。
继承接口 extends
interface Shape {
color: string;
}
interface Square extends Shape {
sideLength: number;
}
let square = <Square>{};
square.color = "blue";
square.sideLength = 10;
复制代码
一个接口可以继承多个接口,创建出多个接口的合成接口。
interface Shape {
color: string;
}
interface PenStroke {
penWidth: number;
}
interface Square extends Shape, PenStroke {
sideLength: number;
}
let square = <Square>{};
square.color = "blue";
square.sideLength = 10;
square.penWidth = 5.0;
复制代码
混合类型
接口能够描述JavaScript里丰富的类型。 因为JavaScript其动态灵活的特点,有时你会希望一个对象可以同时具有上面提到的多种类型。
interface Counter {
(start: number): string;
interval: number;
reset(): void;
}
function getCounter(): Counter {
let counter = <Counter>function (start: number) { };
counter.interval = 123;
counter.reset = function () { };
return counter;
}
let c = getCounter();
c(10);
c.reset();
c.interval = 5.0;
复制代码
接口继承类
class Control {
private state: any;
}
interface SelectableControl extends Control {
select(): void;
}
class Button extends Control implements SelectableControl {
select() { }
}
class TextBox extends Control {
select() { }
}
// 错误:“Image”类型缺少“state”属性。
class Image implements SelectableControl {
select() { }
}
class Location {
}
复制代码
在上面的例子里,SelectableControl
包含了Control
的所有成员,包括私有成员state
。 因为 state
是私有成员,所以只能够是Control
的子类们才能实现SelectableControl
接口。 因为只有 Control
的子类才能够拥有一个声明于Control
的私有成员state
,这对私有成员的兼容性是必需的。
在Control
类内部,是允许通过SelectableControl
的实例来访问私有成员state
的。 实际上, SelectableControl
接口和拥有select
方法的Control
类是一样的。 Button
和TextBox
类是SelectableControl
的子类(因为它们都继承自Control
并有select
方法),但Image
和Location
类并不是这样的。
类
ts中的类的定义类似于java中的类
公共,私有与受保护的修饰符
默认为 public
private
class Animal {
private name: string;
constructor(theName: string) { this.name = theName; }
}
new Animal("Cat").name; // 错误: 'name' 是私有的.
复制代码
TypeScript使用的是结构性类型系统。 当比较两种不同的类型时,并不在乎它们从何处而来,如果所有成员的类型都是兼容的,可以认为它们的类型是兼容的。
当比较带有 private
或 protected
成员的类型的时候,情况就不同了。 如果其中一个类型里包含一个 private
成员,那么只有当另外一个类型中也存在这样一个 private
成员, 并且它们都是来自同一处声明时,这两个类型是兼容的。 对于 protected
成员也使用这个规则。
class Animal {
private name: string;
constructor(theName: string) { this.name = theName; }
}
class Rhino extends Animal {
constructor() { super("Rhino"); }
}
class Employee {
private name: string;
constructor(theName: string) { this.name = theName; }
}
let animal = new Animal("Goat");
let rhino = new Rhino();
let employee = new Employee("Bob");
animal = rhino;
animal = employee; // 错误: Animal 与 Employee 不兼容.
复制代码
protected
protected修饰符与 private修饰符的行为很相似,但有一点不同, protected成员在派生类中仍然可以访问。
class Person {
protected name: string;
constructor(name: string) { this.name = name; }
}
class Employee extends Person {
private department: string;
constructor(name: string, department: string) {
super(name)
this.department = department;
}
public getElevatorPitch() {
return `Hello, my name is ${this.name} and I work in ${this.department}.`;
}
}
let howard = new Employee("Howard", "Sales");
console.log(howard.getElevatorPitch());
console.log(howard.name); // 错误
复制代码
注意,不能在 Person类外使用 name
,但是仍然可以通过 Employee类的实例方法访问,因为 Employee是由 Person派生而来的。
构造函数也可以被标记成 protected
。 这意味着这个类不能在包含它的类外被实例化,但是能被继承。
class Person {
protected name: string;
protected constructor(theName: string) { this.name = theName; }
}
// Employee 能够继承 Person
class Employee extends Person {
private department: string;
constructor(name: string, department: string) {
super(name);
this.department = department;
}
public getElevatorPitch() {
return `Hello, my name is ${this.name} and I work in ${this.department}.`;
}
}
let howard = new Employee("Howard", "Sales");
let john = new Person("John"); // 错误: 'Person' 的构造函数是被保护的.
复制代码
readonly
使用 readonly关键字将属性设置为只读的。 只读属性必须在声明时或构造函数里被初始化。
class Octopus {
readonly name: string;
readonly numberOfLegs: number = 8;
constructor (theName: string) {
this.name = theName;
}
}
let dad = new Octopus("Man with the 8 strong legs");
dad.name = "Man with the 3-piece suit"; // 错误! name 是只读的.
复制代码
参数属性
参数属性可以方便地让我们在一个地方定义并初始化一个成员。 上面代码结合参数属性可写为:
class Octopus {
readonly numberOfLegs: number = 8;
constructor(readonly name: string) {
}
}
复制代码
存取器
TypeScript支持通过getters/setters
来截取对对象成员的访问。 它能帮助你有效的控制对对象成员的访问。
下面来看如何把一个简单的类改写成使用 get
和 set
。 首先,从一个没有使用存取器的例子开始。
class Employee {
fullName: string;
}
let employee = new Employee();
employee.fullName = "Bob Smith";
if (employee.fullName) {
console.log(employee.fullName);
}
复制代码
可以随意的设置 fullName
,这是非常方便的,但是这也可能会带来麻烦。
下面这个版本里,先检查用户密码是否正确,然后再允许其修改员工信息。 把对 fullName
的直接访问改成了可以检查密码的 set
方法。 也加了一个 get
方法,让上面的例子仍然可以工作。
let passcode = "secret passcode";
class Employee {
private _fullName: string;
get fullName(): string {
return this._fullName;
}
set fullName(newName: string) {
if (passcode && passcode == "secret passcode") {
this._fullName = newName;
}
else {
console.log("Error: Unauthorized update of employee!");
}
}
}
let employee = new Employee();
employee.fullName = "Bob Smith";
if (employee.fullName) {
alert(employee.fullName);
}
复制代码
存取器有下面几点需要注意的:
- 存取器要求你将编译器设置为输出ECMAScript 5或更高,不支持降级到ECMAScript 3。
- 只带有
get
不带有set
的存取器自动被推断为readonly
。 这在从代码生成 .d.ts文件时是有帮助的,因为利用这个属性的用户会看到不允许够改变它的值。
静态属性 static
到目前为止,我们只讨论了类的实例成员,那些仅当类被实例化的时候才会被初始化的属性。 我们也可以创建类的静态成员,这些属性存在于类本身上面而不是类的实例上。 在这个例子里,我们使用 static
定义 origin
,因为它是所有网格都会用到的属性。 每个实例想要访问这个属性的时候,都要在 origin
前面加上类名。 如同在实例属性上使用 this.
前缀来访问属性一样,这里我们使用 Grid.
来访问静态属性。
class Grid {
static origin = {x: 0, y: 0};
calculateDistanceFromOrigin(point: {x: number; y: number;}) {
let xDist = (point.x - Grid.origin.x);
let yDist = (point.y - Grid.origin.y);
return Math.sqrt(xDist * xDist + yDist * yDist) / this.scale;
}
constructor (public scale: number) { }
}
let grid1 = new Grid(1.0); // 1x scale
let grid2 = new Grid(5.0); // 5x scale
console.log(grid1.calculateDistanceFromOrigin({x: 10, y: 10}));
console.log(grid2.calculateDistanceFromOrigin({x: 10, y: 10}));
复制代码
抽象类 abstract
抽象类做为其它派生类的基类使用。 它们一般不会直接被实例化。 不同于接口,抽象类可以包含成员的实现细节。 abstract
关键字是用于定义抽象类和在抽象类内部定义抽象方法。
abstract class Animal {
abstract makeSound(): void;
move(): void {
console.log('roaming the earch...');
}
}
复制代码
抽象类中的抽象方法不包含具体实现并且必须在派生类中实现。 抽象方法的语法与接口方法相似。 两者都是定义方法签名但不包含方法体。 然而,抽象方法必须包含 abstract
关键字并且可以包含访问修饰符。
abstract class Department {
constructor(public name: string) {
}
printName(): void {
console.log('Department name: ' + this.name);
}
abstract printMeeting(): void; // 必须在派生类中实现
}
class AccountingDepartment extends Department {
constructor() {
super('Accounting and Auditing'); // 在派生类的构造函数中必须调用 super()
}
printMeeting(): void {
console.log('The Accounting Department meets each Monday at 10am.');
}
generateReports(): void {
console.log('Generating accounting reports...');
}
}
let department: Department; // 允许创建一个对抽象类型的引用
department = new Department(); // 错误: 不能创建一个抽象类的实例
department = new AccountingDepartment(); // 允许对一个抽象子类进行实例化和赋值
department.printName();
department.printMeeting();
department.generateReports(); // 错误: 方法在声明的抽象类中不存在
复制代码
高级技巧
构造函数
当你在TypeScript里声明了一个类的时候,实际上同时声明了很多东西。 首先就是类的 实例的类型。
class Greeter {
greeting: string;
constructor(message: string) {
this.greeting = message;
}
greet() {
return "Hello, " + this.greeting;
}
}
let greeter: Greeter;
greeter = new Greeter("world");
console.log(greeter.greet());
复制代码
类具有 实例部分与 静态部分这两个部分。
class Greeter {
static standardGreeting = "Hello, there";
greeting: string;
greet() {
if (this.greeting) {
return "Hello, " + this.greeting;
}
else {
return Greeter.standardGreeting;
}
}
}
let greeter1: Greeter;
greeter1 = new Greeter();
console.log(greeter1.greet());
let greeterMaker: typeof Greeter = Greeter;
greeterMaker.standardGreeting = "Hey there!";
let greeter2: Greeter = new greeterMaker();
console.log(greeter2.greet());
复制代码
这个例子里, greeter1
与之前看到的一样。 实例化 Greeter
类,并使用这个对象。 与之前看到的一样。
再之后,直接使用类。 创建了一个叫做 greeterMaker
的变量。 这个变量保存了这个类或者说保存了类构造函数。 然后使用 typeof Greeter
,意思是取Greeter
类的类型,而不是实例的类型。 或者更确切的说,"告诉 Greeter
标识符的类型",也就是构造函数的类型。 这个类型包含了类的所有静态成员和构造函数。 之后,就和前面一样,在 greeterMaker
上使用 new
,创建 Greeter
的实例。
把类当做接口使用
类定义会创建两个东西:类的实例类型和一个构造函数。 因为类可以创建出类型,所以你能够在允许使用接口的地方使用类。
class Point {
x: number;
y: number;
}
interface Point3d extends Point {
z: number;
}
let point3d: Point3d = {x: 1, y: 2, z: 3};
复制代码
函数
- js
// Named function
function add(x, y) {
return x + y;
}
// Anonymous function
let myAdd = function(x, y) { return x + y; };
复制代码
函数类型
为函数添加类型
function add(x: number, y: number): number {
return x + y;
}
let myAdd = function(x: number, y: number): number { return x + y; };
复制代码
可选参数和默认参数
- 必要参数
function buildName(firstName: string, lastName: string) {
return firstName + " " + lastName;
}
let result1 = buildName("Bob"); // error, too few parameters
let result2 = buildName("Bob", "Adams", "Sr."); // error, too many parameters
let result3 = buildName("Bob", "Adams"); // ah, just right
复制代码
- 可选参数
function buildName(firstName: string, lastName?: string) {
if (lastName)
return firstName + " " + lastName;
else
return firstName;
}
let result1 = buildName("Bob"); // works correctly now
let result2 = buildName("Bob", "Adams", "Sr."); // error, too many parameters
let result3 = buildName("Bob", "Adams"); // ah, just right
复制代码
- 默认参数
function buildName(firstName: string, lastName = "Smith") {
return firstName + " " + lastName;
}
let result1 = buildName("Bob"); // returns "Bob Smith"
let result2 = buildName("Bob", undefined); // returns "Bob Smith"
let result3 = buildName("Bob", "Adams", "Sr."); // error, too many parameters
let result4 = buildName("Bob", "Adams"); // returns "Bob Adams"
复制代码
在所有必须参数后面的带默认初始化的参数都是可选的,与可选参数一样,在调用函数的时候可以省略。 也就是说可选参数与末尾的默认参数共享参数类型。
剩余参数
必要参数,默认参数和可选参数有个共同点:它们表示某一个参数。 有时,你想同时操作多个参数,或者你并不知道会有多少参数传递进来。 在JavaScript里,你可以使用 arguments
来访问所有传入的参数。
在TypeScript里,你可以把所有参数收集到一个变量里:
function buildName(firstName: string, ...restOfName: string[]) {
return firstName + " " + restOfName.join(" ");
}
let employeeName = buildName("Joseph", "Samuel", "Lucas", "MacKinzie");
复制代码
这个省略号也会在带有剩余参数的函数类型定义上使用到:
function buildName(firstName: string, ...restOfName: string[]) {
return firstName + " " + restOfName.join(" ");
}
let buildNameFun: (fname: string, ...rest: string[]) => string = buildName;
复制代码
this
let deck = {
suits: ["hearts", "spades", "clubs", "diamonds"],
cards: Array(52),
createCardPicker: function() {
return function() {
let pickedCard = Math.floor(Math.random() * 52);
let pickedSuit = Math.floor(pickedCard / 13);
return {suit: this.suits[pickedSuit], card: pickedCard % 13};
}
}
}
let cardPicker = deck.createCardPicker();
let pickedCard = cardPicker();
alert("card: " + pickedCard.card + " of " + pickedCard.suit);
复制代码
这里的this
指向为window
严格模式下为undefined
this
参数
interface Card {
suit: string;
card: number;
}
interface Deck {
suits: string[];
cards: number[];
createCardPicker(this: Deck): () => Card;
}
let deck: Deck = {
suits: ["hearts", "spades", "clubs", "diamonds"],
cards: Array(52),
// NOTE: The function now explicitly specifies that its callee must be of type Deck
createCardPicker: function(this: Deck) {
return () => {
let pickedCard = Math.floor(Math.random() * 52);
let pickedSuit = Math.floor(pickedCard / 13);
return {suit: this.suits[pickedSuit], card: pickedCard % 13};
}
}
}
let cardPicker = deck.createCardPicker();
let pickedCard = cardPicker();
alert("card: " + pickedCard.card + " of " + pickedCard.suit);
复制代码
重载
let suits = ["hearts", "spades", "clubs", "diamonds"];
function pickCard(x: {suit: string; card: number; }[]): number;
function pickCard(x: number): {suit: string; card: number; };
function pickCard(x): any {
// Check to see if we're working with an object/array
// if so, they gave us the deck and we'll pick the card
if (typeof x == "object") {
let pickedCard = Math.floor(Math.random() * x.length);
return pickedCard;
}
// Otherwise just let them pick the card
else if (typeof x == "number") {
let pickedSuit = Math.floor(x / 13);
return { suit: suits[pickedSuit], card: x % 13 };
}
}
let myDeck = [{ suit: "diamonds", card: 2 }, { suit: "spades", card: 10 }, { suit: "hearts", card: 4 }];
let pickedCard1 = myDeck[pickCard(myDeck)];
alert("card: " + pickedCard1.card + " of " + pickedCard1.suit);
let pickedCard2 = pickCard(15);
alert("card: " + pickedCard2.card + " of " + pickedCard2.suit);
复制代码
泛型 <T>
function identity(arg: any): any {
return arg;
}
复制代码
使用any
类型会导致这个函数可以接收任何类型的arg
参数,这样就丢失了一些信息:传入的类型与返回的类型应该是相同的。如果我们传入一个数字,我们只知道任何类型的值都有可能被返回。
因此,我们需要一种方法使返回值的类型与传入参数的类型是相同的。 这里,我们使用了 类型变量,它是一种特殊的变量,只用于表示类型而不是值。
function identity<T>(arg: T): T {
return arg;
}
复制代码
定义了泛型函数后,可以用两种方法使用。
- 第一种是,传入所有的参数,包含类型参数:
let output = identity<string>("myString");
复制代码
这里明确的指定了T
是string
类型,并做为一个参数传给函数,使用了<>
括起来而不是()
- 第二种方法更普遍。利用了类型推论 -- 即编译器会根据传入的参数自动地帮助我们确定
T
的类型:
let output = identity("myString");
复制代码
泛型接口
interface GenericIdentityFn {
<T>(arg: T): T;
}
function identity<T>(arg: T): T {
return arg;
}
let myIdentity: GenericIdentityFn = identity;
复制代码
想把泛型参数当作整个接口的一个参数,这样就能清楚的知道使用的具体是哪个泛型类型(比如: Dictionary<string>
而不只是Dictionary
)。 这样接口里的其它成员也能知道这个参数的类型了。
interface GenericIdentityFn<T> {
(arg: T): T;
}
function identity<T>(arg: T): T {
return arg;
}
let myIdentity: GenericIdentityFn<number> = identity;
复制代码
泛型约束
function loggingIdentity<T>(arg: T): T {
console.log(arg.length); // Error: T doesn't have .length
return arg;
}
复制代码
创建一个包含 .length
属性的接口,使用这个接口和extends
关键字来实现约束:
interface Lengthwise {
length: number;
}
function loggingIdentity<T extends Lengthwise>(arg: T): T {
console.log(arg.length); // Now we know it has a .length property, so no more error
return arg;
}
复制代码
loggingIdentity(3); // Error, number doesn't have a .length property
loggingIdentity({length: 10, value: 3});
复制代码
模块module
用法可以遵循js
- export (多个)
- export default (唯一)
- import {data} from './module'
- import {data as list} from './module'
- import * as module from './module'
为了支持CommonJS和AMD的exports, TypeScript提供了export =语法。
若使用export =导出一个模块,则必须使用TypeScript的特定语法import module = require("module")来导入此模块。
let numberRegexp = /^[0-9]+$/;
class ZipCodeValidator {
isAcceptable(s: string) {
return s.length === 5 && numberRegexp.test(s);
}
}
export = ZipCodeValidator;
复制代码
import zip = require("./ZipCodeValidator");
复制代码
装饰器@
装饰器是一种特殊类型的声明,它能够被附加到类声明,方法, 访问符,属性或参数上。 装饰器使用 @expression
这种形式,expression
求值后必须为一个函数,它会在运行时被调用,被装饰的声明信息做为参数传入。