【LeetCode】21.合并两个有序列表(递归+迭代,java实现,含gif动图)

203 阅读2分钟

分析

方法一:递归

思路

我们可以如下递归地定义两个链表里的 merge 操作(忽略边界情况,比如空链表等):

$\left{ \begin{array}{ll} list1[0] + merge(list1[1:], list2) & list1[0] < list2[0] \ list2[0] + merge(list1, list2[1:]) & otherwise \end{array} \right. $

也就是说,两个链表头部值较小的一个节点与剩下元素的 merge 操作结果合并。

gif7

算法

我们直接将以上递归过程建模,同时需要考虑边界情况。

如果 l1 或者 l2 一开始就是空链表 ,那么没有任何操作需要合并,所以我们只需要返回非空链表。否则,我们要判断 l1l2 哪一个链表的头节点的值更小,然后递归地决定下一个添加到结果里的节点。如果两个链表有一个为空,递归结束。

class Solution {
    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        if (l1 == null) {
            return l2;
        }
        else if (l2 == null) {
            return l1;
        }
        else if (l1.val < l2.val) {
            l1.next = mergeTwoLists(l1.next, l2);
            return l1;
        }
        else {
            l2.next = mergeTwoLists(l1, l2.next);
            return l2;
        }

    }
}

复杂度分析

  • 时间复杂度:O(n + m),其中 n 和 m 分别为两个链表的长度。因为每次调用递归都会去掉 l1 或者 l2 的头节点(直到至少有一个链表为空),函数 mergeTwoList 至多只会递归调用每个节点一次。因此,时间复杂度取决于合并后的链表长度,即 O(n+m)。
  • 空间复杂度:O(n + m),其中 n 和 m 分别为两个链表的长度。递归调用 mergeTwoLists 函数时需要消耗栈空间,栈空间的大小取决于递归调用的深度。结束递归调用时 mergeTwoLists 函数最多调用 n+m 次,因此空间复杂度为 O(n+m)。
方法二:迭代

思路

我们可以用迭代的方法来实现上述算法。当 l1l2 都不是空链表时,判断 l1l2 哪一个链表的头节点的值更小,将较小值的节点添加到结果里,当一个节点被添加到结果里之后,将对应链表中的节点向后移一位。

算法

首先,我们设定一个哨兵节点 prehead ,这可以在最后让我们比较容易地返回合并后的链表。我们维护一个 prev 指针,我们需要做的是调整它的 next 指针。然后,我们重复以下过程,直到 l1 或者 l2 指向了 null :如果 l1 当前节点的值小于等于 l2 ,我们就把 l1 当前的节点接在 prev 节点的后面同时将 l1 指针往后移一位。否则,我们对 l2 做同样的操作。不管我们将哪一个元素接在了后面,我们都需要把 prev 向后移一位。

在循环终止的时候, l1l2 至多有一个是非空的。由于输入的两个链表都是有序的,所以不管哪个链表是非空的,它包含的所有元素都比前面已经合并链表中的所有元素都要大。这意味着我们只需要简单地将非空链表接在合并链表的后面,并返回合并链表即可。

下图展示了 1->4->51->2->3->6 两个链表迭代合并的过程:

gif5

class Solution {
    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        ListNode prehead = new ListNode(-1);

        ListNode prev = prehead;
        while (l1 != null && l2 != null) {
            if (l1.val <= l2.val) {
                prev.next = l1;
                l1 = l1.next;
            } else {
                prev.next = l2;
                l2 = l2.next;
            }
            prev = prev.next;
        }

        // 合并后 l1 和 l2 最多只有一个还未被合并完,我们直接将链表末尾指向未合并完的链表即可
        prev.next = l1 == null ? l2 : l1;

        return prehead.next;
    }
}

复杂度分析

  • 时间复杂度:O(n + m) ,其中 n和 m分别为两个链表的长度。因为每次循环迭代中,l1l2 只有一个元素会被放进合并链表中, 因此 while 循环的次数不会超过两个链表的长度之和。所有其他操作的时间复杂度都是常数级别的,因此总的时间复杂度为 O(n+m)。
    代中,l1l2 只有一个元素会被放进合并链表中, 因此 while 循环的次数不会超过两个链表的长度之和。所有其他操作的时间复杂度都是常数级别的,因此总的时间复杂度为 O(n+m)。
  • 空间复杂度:O(1) 。我们只需要常数的空间存放若干变量。