阅读 535

分布式任务队列Celery入门与进阶

分布式任务队列Celery入门与进阶

一、简介

Celery是由Python开发、简单、灵活、可靠的分布式任务队列,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务。Celery侧重于实时操作,但对调度支持也很好,其每天可以处理数以百万计的任务。特点:

  • 简单:熟悉celery的工作流程后,配置使用简单

  • 高可用:当任务执行失败或执行过程中发生连接中断,celery会自动尝试重新执行任务

  • 快速:一个单进程的celery每分钟可处理上百万个任务

  • 灵活:几乎celery的各个组件都可以被扩展及自定制

应用场景举例:

  • 1.web应用:当用户在网站进行某个操作需要很长时间完成时,我们可以将这种操作交给Celery执行,直接返回给用户,等到Celery执行完成以后通知用户,大大提好网站的并发以及用户的体验感。

  • 2.任务场景:比如在运维场景下需要批量在几百台机器执行某些命令或者任务,此时Celery可以轻松搞定。

  • 3.定时任务:向定时导数据报表、定时发送通知类似场景,虽然Linux的计划任务可以帮我实现,但是非常不利于管理,而Celery可以提供管理接口和丰富的API。

二、架构&工作原理

  Celery由以下三部分构成:消息中间件(Broker)、任务执行单元Worker、结果存储(Backend),如下图:

img

工作原理:

  1. 任务模块Task包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往消息队列,而定时任务由Celery Beat进程周期性地将任务发往消息队列;

  2. 任务执行单元Worker实时监视消息队列获取队列中的任务执行;

  3. Woker执行完任务后将结果保存在Backend中;

消息中间件Broker

  消息中间件Broker官方提供了很多备选方案,支持RabbitMQ、Redis、Amazon SQS、MongoDB、Memcached 等,官方推荐RabbitMQ。

任务执行单元Worker

  Worker是任务执行单元,负责从消息队列中取出任务执行,它可以启动一个或者多个,也可以启动在不同的机器节点,这就是其实现分布式的核心。

结果存储Backend

  Backend结果存储官方也提供了诸多的存储方式支持:RabbitMQ、 Redis、Memcached,SQLAlchemy, Django ORM、Apache Cassandra、Elasticsearch。

文章分类
后端
文章标签