C++ 利用硬件加速矩阵乘法

2,024 阅读1分钟

文章目录


在这里插入图片描述


一、矩阵乘法定义

  • 矩阵 A x × y A_{x \times y} Ax×y​ 和 矩阵 B u × v B_{u \times v} Bu×v​ 相乘的前提条件是 y = = u y==u y==u ,并且相乘后得到的矩阵为 C x × v C_{x \times v} Cx×v​(即 A A A 的行和 B B B 的列构成了矩阵 C C C 的行列);

二、矩阵类封装

  • 我们用 C++ 封装了一个 n × m n \times m n×m 的矩阵类,用二维数组来存储数据,定义如下:
#define MAXN 1000
#define LL __int64

class Matrix {
private:
	int n, m;
	LL** pkData;
public:
	Matrix() : n(0), m(0) {
		pkData = NULL;
	}
	void Alloc() {
		pkData = new LL *[MAXN];                       // 1)
		for (int i = 0; i < MAXN; ++i) {
			pkData[i] = new LL[MAXN];
		}
	}
	void Dealloc() {
		if (pkData) {
			for (int i = 0; i < MAXN; ++i) {           // 2)
				delete [] pkData[i];
			}
			delete[] pkData;
			pkData = NULL;
		}
	}
};
  • 1) p k D a t a pkData pkData 可以认为是一个二维数组( p k D a t a [ i ] [ j ] pkData[i][j] pkData[i][j] 就是矩阵第 i 行,第 j 列的数据),之所以这里用了二维指针,是因为当 MAXN 很大时,栈上分配不了这么多空间,容易导致栈溢出,所以通过 new 把空间分配在了堆上;
  • 2)释放空间的时候,首先释放低维空间,再释放高维空间;

三、矩阵乘法实现

1、 i j k ijk ijk 式

  • 最简单的矩阵乘法实现如下:
class Matrix {
	...
public:
	void Multiply_ijk(const Matrix& other, Matrix& ret) {
		// assert(m == other.n);
		ret.Reset(n, other.m);
		int i, j, k;
		for (i = 0; i < n; i++) {
			for (j = 0; j < other.m; j++) {
				for (k = 0; k < m; k++) {
					ret.pkData[i][j] += pkData[i][k] * other.pkData[k][j];
				}
			}
		}
	}
};
  • 这种方法被称为 i j k ijk ijk 式,对矩阵乘法 A × B = C A \times B = C A×B=C,枚举 A A A 的每一行,再枚举 B B B 的每一列,分别对应相乘后放入矩阵 C C C 的对应位置中,如下图所示;
    在这里插入图片描述

2、 i k j ikj ikj 式

  • 对上述算法进行一些改进,交换两个内层循环的位置,得到如下算法:
class Matrix {
	...
public:
	void Multiply_ikj(const Matrix& other, Matrix& ret) {
		// assert(m == other.n);
		ret.Reset(n, other.m);
		int i, j, k;
		for (i = 0; i < n; i++) {
			for (k = 0; k < m; k++) {
				LL v = pkData[i][k];
				for (j = 0; j < other.m; j++) {
					ret.pkData[i][j] += v * other.pkData[k][j];
				}
			}
		}
	}
};
  • 这种方法被称为 i k j ikj ikj 式,对矩阵乘法 A × B = C A \times B = C A×B=C,行优先枚举 A A A 的每一个格子,再枚举 B B B 的每一行,分别对应相乘后放入矩阵 C C C 的对应位置中,每次相乘得到的 C C C 都是部分积,如下图所示,用绿色的深浅来表示这个值是否已经完整求得;
    在这里插入图片描述

3、 k i j kij kij 式

  • 对上述算法再进行一些改进,交换两个外层循环的位置,得到如下算法:
class Matrix {
	...
public:
	void Multiply_kij(const Matrix& other, Matrix& ret) {
		// assert(m == other.n);
		ret.Reset(n, other.m);
		int i, j, k;
		for (k = 0; k < m; k++) {
			for (i = 0; i < n; i++) {
				LL v = pkData[i][k];
				for (j = 0; j < other.m; j++) {
					ret.pkData[i][j] += v * other.pkData[k][j];
				}
			}
		}
	}
};
  • 这种方法被称为 k i j kij kij 式,对矩阵乘法 A × B = C A \times B = C A×B=C,列优先枚举 A A A 的每一个格子,再枚举 B B B 的每一行,分别对应相乘后放入矩阵 C C C 的对应位置中,每次相乘得到的 C C C 都是部分积,如下图所示,用绿色的深浅来表示这个值是否已经完整求得;
    在这里插入图片描述

四、时间测试

矩阵阶数i j k ijk ijki k j ikj ikjk i j kij kij
20047 ms31 ms16 ms
500781 ms438 ms453 ms
10008657 ms3687 ms3688 ms
200069547 ms28000 ms29672 ms
  • 由于矩阵乘法本身的时间复杂度是 O(N3) 的,所以数据量越大,越能看出实际效果;

五、原理分析

  • 原因是因为 CPU 访问内存的速度比 CPU 计算速度慢得多,为了解决速度不匹配的问题,在 CPU 与 内存 之间加了高速缓存cache。高速缓存 cache 的存在大大提高了 CPU 访问数据的速度。但是当内存访问不连续的时候,就会导致 cache 命中率降低,所以为了加速,就要尽可能使内存访问连续,即不要跳来跳去。
  • 矩阵

六、最后结论

  • 运行速度: i k j ≈ k i j > i j k ikj \approx kij > ijk ikj≈kij>ijk
  • 模板地址:矩阵乘法模板