话不多说,上来就干
配置
rateLimiter是基于令牌桶算法进行限流,现在主流的算法有队列,令牌桶,漏洞算法等。
在 soul-admin–> 插件管理–> rate_limiter 将其设置为开启。
在插件中,对redis进行配置。
目前支持redis的单机,哨兵,以及集群模式。
如果是哨兵,集群等多节点的,在URL中的配置,请对每个实列使用 ; 分割. 如 192.168.1.1:6379;192.168.1.2:6379。
如果用户无需使用,在admin后台把插件禁用。
在网关启动服务配置pom
<!-- soul ratelimiter plugin start-->
<dependency>
<groupId>org.dromara</groupId>
<artifactId>soul-spring-boot-starter-plugin-ratelimiter</artifactId>
<version>${last.version}</version>
</dependency>
<!-- soul ratelimiter plugin end-->
打开admin后台管理服务,选择redis模式,我们直接选择单机模式
点击确定后,admin服务会通过数据同步,处理插件
@Override
public void handlerPlugin(final PluginData pluginData) {
if (Objects.nonNull(pluginData) && pluginData.getEnabled()) {
//init redis
RateLimiterConfig rateLimiterConfig = GsonUtils.getInstance().fromJson(pluginData.getConfig(), RateLimiterConfig.class);
//spring data redisTemplate
if (Objects.isNull(Singleton.INST.get(ReactiveRedisTemplate.class))
|| Objects.isNull(Singleton.INST.get(RateLimiterConfig.class))
|| !rateLimiterConfig.equals(Singleton.INST.get(RateLimiterConfig.class))) {
// 创建连接工厂
LettuceConnectionFactory lettuceConnectionFactory = createLettuceConnectionFactory(rateLimiterConfig);
lettuceConnectionFactory.afterPropertiesSet();
RedisSerializer<String> serializer = new StringRedisSerializer();
RedisSerializationContext<String, String> serializationContext =
RedisSerializationContext.<String, String>newSerializationContext().key(serializer).value(serializer).hashKey(serializer).hashValue(serializer).build();
ReactiveRedisTemplate<String, String> reactiveRedisTemplate = new ReactiveRedisTemplate<>(lettuceConnectionFactory, serializationContext);
Singleton.INST.single(ReactiveRedisTemplate.class, reactiveRedisTemplate);
Singleton.INST.single(RateLimiterConfig.class, rateLimiterConfig);
}
}
}
private LettuceConnectionFactory createLettuceConnectionFactory(final RateLimiterConfig rateLimiterConfig) {
LettuceClientConfiguration lettuceClientConfiguration = getLettuceClientConfiguration(rateLimiterConfig);
// 选择集群方式
if (RedisModeEnum.SENTINEL.getName().equals(rateLimiterConfig.getMode())) {
return new LettuceConnectionFactory(redisSentinelConfiguration(rateLimiterConfig), lettuceClientConfiguration);
}
if (RedisModeEnum.CLUSTER.getName().equals(rateLimiterConfig.getMode())) {
return new LettuceConnectionFactory(redisClusterConfiguration(rateLimiterConfig), lettuceClientConfiguration);
}
return new LettuceConnectionFactory(redisStandaloneConfiguration(rateLimiterConfig), lettuceClientConfiguration);
}
修改规则器
capacity(容量):是允许用户在一秒钟内执行的最大请求数。这是令牌桶可以保存的令牌数。
rate(速率):是你允许用户每秒执行多少请求,而丢弃任何请求。这是令牌桶的填充速率。
源码跟踪
找到插件链执行的方法,执行 doExecute()
protected Mono<Void> doExecute(final ServerWebExchange exchange, final SoulPluginChain chain, final SelectorData selector, final RuleData rule) {
final String handle = rule.getHandle();
final RateLimiterHandle limiterHandle = GsonUtils.getInstance().fromJson(handle, RateLimiterHandle.class);
// 返回限流结果
// limiterHandle.getReplenishRate() 获取可以充填的流量
// limiterHandle.getBurstCapacity() 获取击穿容量
return redisRateLimiter.isAllowed(rule.getId(), limiterHandle.getReplenishRate(), limiterHandle.getBurstCapacity())
.flatMap(response -> {
// 通过isAllowed属性判断是否允许通过
if (!response.isAllowed()) {
exchange.getResponse().setStatusCode(HttpStatus.TOO_MANY_REQUESTS);
Object error = SoulResultWrap.error(SoulResultEnum.TOO_MANY_REQUESTS.getCode(), SoulResultEnum.TOO_MANY_REQUESTS.getMsg(), null);
return WebFluxResultUtils.result(exchange, error);
}
return chain.execute(exchange);
});
}
关键方法 isAllowed(....)
,其中通过异步调用lua脚本实现非阻塞高性能限流
public Mono<RateLimiterResponse> isAllowed(final String id, final double replenishRate, final double burstCapacity) {
// 未被构造器初始化
if (!this.initialized.get()) {
throw new IllegalStateException("RedisRateLimiter is not initialized");
}
List<String> keys = getKeys(id);
List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "", Instant.now().getEpochSecond() + "", "1");
// execute()方法,将限流参数传递给script,直接调用lua脚本,返回结果
Flux<List<Long>> resultFlux = Singleton.INST.get(ReactiveRedisTemplate.class).execute(this.script, keys, scriptArgs);
// 判断结果
return resultFlux.onErrorResume(throwable -> Flux.just(Arrays.asList(1L, -1L)))
.reduce(new ArrayList<Long>(), (longs, l) -> {
longs.addAll(l);
return longs;
}).map(results -> {
boolean allowed = results.get(0) == 1L;
Long tokensLeft = results.get(1);
RateLimiterResponse rateLimiterResponse = new RateLimiterResponse(allowed, tokensLeft);
log.info("RateLimiter response:{}", rateLimiterResponse.toString());
return rateLimiterResponse;
}).doOnError(throwable -> log.error("Error determining if user allowed from redis:{}", throwable.getMessage()));
}
其中 execute()
方法是spring的 ReactiveRedisTemplate
调用redis方法,可以配置脚本执行redis命令
/**
* Executes the given {@link RedisScript}
*
* @param script The script to execute. Must not be {@literal null}.
* @param keys keys that need to be passed to the script. Must not be {@literal null}.
* @param args args that need to be passed to the script. Must not be {@literal null}.
* @return result value of the script {@link Flux#empty()} if {@link RedisScript#getResultType()} is {@literal null},
* likely indicating a throw-away status reply (i.e. "OK").
*/
<T> Flux<T> execute(RedisScript<T> script, List<K> keys, List<?> args);
调用lua脚本
private RedisScript<List<Long>> redisScript() {
DefaultRedisScript redisScript = new DefaultRedisScript<>();
redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("/META-INF/scripts/request_rate_limiter.lua")));
redisScript.setResultType(List.class);
return redisScript;
}
lua脚本(其实我也看不懂)
--
-- Licensed to the Apache Software Foundation (ASF) under one or more
-- contributor license agreements. See the NOTICE file distributed with
-- this work for additional information regarding copyright ownership.
-- The ASF licenses this file to You under the Apache License, Version 2.0
-- (the "License"); you may not use this file except in compliance with
-- the License. You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
--
local tokens_key = KEYS[1]
local timestamp_key = KEYS[2]
--redis.log(redis.LOG_WARNING, "tokens_key " .. tokens_key)
local rate = tonumber(ARGV[1])
local capacity = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
local requested = tonumber(ARGV[4])
local fill_time = capacity/rate
local ttl = math.floor(fill_time*2)
--redis.log(redis.LOG_WARNING, "rate " .. ARGV[1])
--redis.log(redis.LOG_WARNING, "capacity " .. ARGV[2])
--redis.log(redis.LOG_WARNING, "now " .. ARGV[3])
--redis.log(redis.LOG_WARNING, "requested " .. ARGV[4])
--redis.log(redis.LOG_WARNING, "filltime " .. fill_time)
--redis.log(redis.LOG_WARNING, "ttl " .. ttl)
local last_tokens = tonumber(redis.call("get", tokens_key))
if last_tokens == nil then
last_tokens = capacity
end
--redis.log(redis.LOG_WARNING, "last_tokens " .. last_tokens)
local last_refreshed = tonumber(redis.call("get", timestamp_key))
if last_refreshed == nil then
last_refreshed = 0
end
--redis.log(redis.LOG_WARNING, "last_refreshed " .. last_refreshed)
local delta = math.max(0, now-last_refreshed)
local filled_tokens = math.min(capacity, last_tokens+(delta*rate))
local allowed = filled_tokens >= requested
local new_tokens = filled_tokens
local allowed_num = 0
if allowed then
new_tokens = filled_tokens - requested
allowed_num = 1
end
--redis.log(redis.LOG_WARNING, "delta " .. delta)
--redis.log(redis.LOG_WARNING, "filled_tokens " .. filled_tokens)
--redis.log(redis.LOG_WARNING, "allowed_num " .. allowed_num)
--redis.log(redis.LOG_WARNING, "new_tokens " .. new_tokens)
redis.call("setex", tokens_key, ttl, new_tokens)
redis.call("setex", timestamp_key, ttl, now)
return { allowed_num, new_tokens }