说明
v8为了优化字节码+即时编译(JIT),sort函数在7.0后迁移到Torque,且排序算法改为TimSort。7.0版本及之前使用js开发,本文主要分析js版本。
js版本源码
function InnerArraySort(array, length, comparefn) {
// In-place QuickSort algorithm.
// For short (length <= 10) arrays, insertion sort is used for efficiency.
if (!IS_CALLABLE(comparefn)) {
comparefn = function (x, y) {
if (x === y) return 0;
if (%_IsSmi(x) && %_IsSmi(y)) {
return %SmiLexicographicCompare(x, y);
}
x = TO_STRING(x);
y = TO_STRING(y);
if (x == y) return 0;
else return x < y ? -1 : 1;
};
}
function InsertionSort(a, from, to) {
for (var i = from + 1; i < to; i++) {
var element = a[i];
for (var j = i - 1; j >= from; j--) {
var tmp = a[j];
var order = comparefn(tmp, element);
if (order > 0) {
a[j + 1] = tmp;
} else {
break;
}
}
a[j + 1] = element;
}
};
function GetThirdIndex(a, from, to) {
var t_array = new InternalArray();
// Use both 'from' and 'to' to determine the pivot candidates.
var increment = 200 + ((to - from) & 15);
var j = 0;
from += 1;
to -= 1;
for (var i = from; i < to; i += increment) {
t_array[j] = [i, a[i]];
j++;
}
t_array.sort(function(a, b) {
return comparefn(a[1], b[1]);
});
var third_index = t_array[t_array.length >> 1][0];
return third_index;
}
function QuickSort(a, from, to) {
var third_index = 0;
while (true) {
// Insertion sort is faster for short arrays.
if (to - from <= 10) {
InsertionSort(a, from, to);
return;
}
if (to - from > 1000) {
third_index = GetThirdIndex(a, from, to);
} else {
third_index = from + ((to - from) >> 1);
}
// Find a pivot as the median of first, last and middle element.
var v0 = a[from];
var v1 = a[to - 1];
var v2 = a[third_index];
var c01 = comparefn(v0, v1);
if (c01 > 0) {
// v1 < v0, so swap them.
var tmp = v0;
v0 = v1;
v1 = tmp;
} // v0 <= v1.
var c02 = comparefn(v0, v2);
if (c02 >= 0) {
// v2 <= v0 <= v1.
var tmp = v0;
v0 = v2;
v2 = v1;
v1 = tmp;
} else {
// v0 <= v1 && v0 < v2
var c12 = comparefn(v1, v2);
if (c12 > 0) {
// v0 <= v2 < v1
var tmp = v1;
v1 = v2;
v2 = tmp;
}
}
// v0 <= v1 <= v2
a[from] = v0;
a[to - 1] = v2;
var pivot = v1;
var low_end = from + 1; // Upper bound of elements lower than pivot.
var high_start = to - 1; // Lower bound of elements greater than pivot.
a[third_index] = a[low_end];
a[low_end] = pivot;
// From low_end to i are elements equal to pivot.
// From i to high_start are elements that haven't been compared yet.
partition: for (var i = low_end + 1; i < high_start; i++) {
var element = a[i];
var order = comparefn(element, pivot);
if (order < 0) {
a[i] = a[low_end];
a[low_end] = element;
low_end++;
} else if (order > 0) {
do {
high_start--;
if (high_start == i) break partition;
var top_elem = a[high_start];
order = comparefn(top_elem, pivot);
} while (order > 0);
a[i] = a[high_start];
a[high_start] = element;
if (order < 0) {
element = a[i];
a[i] = a[low_end];
a[low_end] = element;
low_end++;
}
}
}
if (to - high_start < low_end - from) {
QuickSort(a, high_start, to);
to = low_end;
} else {
QuickSort(a, from, low_end);
from = high_start;
}
}
};
针对不同数据规模如何选择排序算法?
如果数据量小于等于10,使用插入排序,否则使用快速排序。快速排序递归时,如果递归的数组长度<=10,同样按照插入排序处理。
if (to - from <= 10) {
InsertionSort(a, from, to);
return;
}
为什么数据量小的时候选择插入排序?
插入排序的时间复杂度是O(n^2),快速排序的时间复杂度为O(nlog n)。但是这个时间复杂度只是反应算法执行时间和数据规模增长的一种趋势。快排的大O表示法的O(nlog n)是忽略低阶、系数、常数简化而来的,之所以可以忽略,有一个前提,那就是数据规模n足够大。但是当数据比较少的时候,比如10个数,插入排序为1010=100个单位,但是快排可能为O(fnlog n+c) f为系数,c为常数,假设f=10,c=20,此时O(10)=1010*log10+20,很明显已经大于100,所以在数据量小的时候,插入排序可能执行时间更短。
快速排序优化,如何选择分区点(pivot)?
v8采用的三点取中法
,从头、尾、中间(third_index),取三个数的中间值的下标作为pivot分区点。
但是这个中间点third_index
的选取有一些技巧,如果数据量小于1000,则直接选取首尾中点。否则需要GetThirdIndex函数返回。
if (to - from > 1000) {
third_index = GetThirdIndex(a, from, to);
} else {
third_index = from + ((to - from) >> 1);
}
GetThirdIndex函数对arr每隔一定间距(increment
)取出一个数放入t_array,并对这个集合排序取中间值,返回中间值
function GetThirdIndex(a, from, to) {
var t_array = new InternalArray();
// Use both 'from' and 'to' to determine the pivot candidates.
var increment = 200 + ((to - from) & 15);
var j = 0;
from += 1;
to -= 1;
for (var i = from; i < to; i += increment) {
t_array[j] = [i, a[i]];
j++;
}
t_array.sort(function(a, b) {
return comparefn(a[1], b[1]);
});
var third_index = t_array[t_array.length >> 1][0];
return third_index;
}
判断三个点的大小,选择中间值
// Find a pivot as the median of first, last and middle element.
var v0 = a[from];
var v1 = a[to - 1];
var v2 = a[third_index];
var c01 = comparefn(v0, v1);
if (c01 > 0) {
// v1 < v0, so swap them.
var tmp = v0;
v0 = v1;
v1 = tmp;
} // v0 <= v1.
var c02 = comparefn(v0, v2);
if (c02 >= 0) {
// v2 <= v0 <= v1.
var tmp = v0;
v0 = v2;
v2 = v1;
v1 = tmp;
} else {
// v0 <= v1 && v0 < v2
var c12 = comparefn(v1, v2);
if (c12 > 0) {
// v0 <= v2 < v1
var tmp = v1;
v1 = v2;
v2 = tmp;
}
}
// v0 <= v1 <= v2
a[from] = v0;
a[to - 1] = v2;
var pivot = v1;
快速排序如何避免递归过深导致栈溢出?
从源码来看,并没有针对递归过深可能导致栈溢出情况做处理,如果调用栈深度大于js引擎(v8等)设置的最大深度就报错终止
避免栈溢出通常会有两种方法:
- 增加深度计数,超过一定深度就停止递归
- 在堆上模拟入栈出栈
Torque版本
v8在7.0版本以后,sort算法使用了torque重构,改用了timSort排序算法,包含其他优化技巧,后续再研究。先插个旗👀
torque sort源码