基于 Redis 和 Lua 实现分布式令牌桶限流

·  阅读 783

rpc-tech-stack 系列的实践文章 ~ 本文属于限流话题.

限流是一个很大的话题,准备把其中的所有限流器都实现一遍,以此也算全都写过了,到时候再用也不至于会心虚,毕竟真实写完成过。本文主要讲述了如何基于 Redis 与 Lua实现分布式令牌桶的限流方案。

读前提问

我觉得学习任何东西前都应该有自己的反问,这种反问基于标题给你的大概印象。带着问题来看文章,最后应该比盲目的看有收获,先提出几个基础的问题。

限流是什么

通过某种手段对某个时间段的并发访问请求进行流量限制,一旦流量达到限制阈值则可以拒绝服务,排队或等待,目的是防止系统因大流量或突发流量导致服务不可用或崩溃,是一种确保系统高可用的手段。

限流的简单了解

限流常见场景

  • 对外限流:

    • 电商秒杀(因秒杀业务特性,需要限流):到达开卖时间瞬间大流量,此时下单人数>商品库存,服务器不可能同时全部消费,需要进行限流,卖完了之后就拒绝后续下单请求。

    • 微博热搜(因产品特性,需要限流):突然出现了几个大瓜,那微博是不是突然流量激增,重灾区就是微博热搜,此时所有服务满载运行,必须有个限流策略保证服务的高可用。

    • 防止恶意攻击(突发恶意攻击,需要限流):比如某一个 API 被疯狂请求,或者某一个 IP 疯狂请求公司的 API,此时就需要进行限流,常见措施是先告警,再限流。为了不影响其他服务的正常使用,需要设计限流方案。

    • API有偿调用:用户认证+限流策略,顾名思义没啥好说的,一般是 SAAS 公司最常见的业务,常见于 OPEN-API 相关的小组负责的。

  • 对内限流

    • BUG预防:核心服务的高可用是十分重要的,千万不能挂。如果内部应用出现 bug,一直调用核心服务,核心服务就有被击垮的风险,限流也十分重要。

    • 缓存雪崩:请求直接打到 DB,那就哦豁完蛋了,所以需要根据业务场景来实现限流后是排队还是丢弃。

综上所得,需要进行限流的场景可以分为三种:

  1. 公共的 API ,限流策略用于open-api 网关与相关服务的可用性,同时可以防止恶意攻击。

  2. 内部的核心应用,应对 bug 或其他突发情况,目的就是保证突发情况下核心应用的高可用。

  3. 产品具备突发大流量请求的特性,妥妥的都给加上限流策略,保证整个系统的高可用。

限流解决了什么问题

保证服务高可用,牺牲一部分的流量,换取服务的可用性。对于被限流器直接作用的应用来说,除了保证自身不被流量击垮,还保护了依赖它的下游应用。

限流带来的问题

任何技术都是双刃剑,没有绝对的好用,能带来优点必然也会带来问题。

  • 限流组件保证了高可用,牺牲了性能,增加了一层 IO 环节的开销,单机限流在本地,分布式限流还要通过网络协议。

  • 限流组件保证了高可用,牺牲了一致性,在大流量的情况下,请求的处理会出现延迟的情况,这种场景便无法保证强一致性。特殊情况下,还无法保证最终一致性,部分请求直接被抛弃。

  • 限流组件拥有流控权,若限流组件挂了,会引起雪崩效应,导致请求与业务的大批量失败。

  • 引入限流组件,增加系统的复杂程度,开发难度增加,限流中间件的设计本身就是一个复杂的体系,需要综合业务与技术去思考与权衡,同时还要确保限流组件本身的高可用与性能,极大增加工作量,甚至需要一个团队去专门开发。

设计限流组件本身需要考虑的点

如果我来设计限流组件,我大致会确认如下几个点:

  1. 明确限流器的目的:

    • 用在哪些模块?

    • 应对哪些场景下的什么问题?

    • 是单机限流还是分布式限流?

    • 确定限流模块的使用层面?例如:单应用维度、业务域维度、网关维度

  2. 明确限流器的维度,例如 IP 维度,用户授权 token 维度,API 维度等

  3. 怎么保证限流组件的高可用?

  4. 怎么解决使用限流组件后带来的一致性问题?

  5. 怎么缩小限流器的粒度,实现平滑限流?

常见的限流实现

  • 单机

    • 基于Java 并发工具

      • 信号量

      • concurrentHashMap

    • 基于Google Guava RateLimiter

      • 稳定模式(SmoothBursty:令牌生成速度恒定)

      • 渐进模式(SmoothWarmingUp:令牌生成速度缓慢提升直到维持在一个稳定值)

  • 分布式

    • Redis + Lua

    • Nginx + Lua

常见限流器种类

这四种限流器虽然网上介绍的很多,但是我写给自己看的 ^_^,自己要每次遇到都能够脱口而出,而不是“我经常看到过,但是我记不起来了”或者“我知道是什么意思,但是我就是说不出来,也说不清楚”。后续, 等API网关的限流模块代码完成后, 对着代码和实践会仔细展开说说 ~

  • 计数器(固定窗口限流器)

  • 滑动窗口限流器

  • 令牌桶限流器

  • 漏桶限流器

开始实践

模拟的场景

模拟API 网关中的一个 API 接口在某个时刻突然接收到 100 个并发请求,但是该 API 配置的令牌桶限流器每1分钟生成一个,每次限流间隔为 1 小时,限流上限为 60,则通过代码模拟出最终效果,并输出日志。

实现的效果

构建请求

通过参数可知,限流器的类别LimiterType选择的是令牌桶,限流的时间单位timeUnit是每小时,每个限流时间内的令牌桶内令牌的最大数量value是 60.

{
    "id": 3,
    "apiId": 3,
    "apiName": "测试API",
    "ip": "127.0.0.1",
    "dimensionName": "app_id",
    "dimensionValue": "testid1234",
    "timeUnit": 2,
    "value": 60,
    "LimiterType": 1
}

复制代码

使用 PostMan 中的迭代器功能,进行循环请求:

计算令牌桶与推测

  • 限流间隔是 1 小时

  • 桶内最大令牌是 60 个

  • 计算得出令牌的生成间隔是 1 个/1 分钟

  • 模拟并发请求 100 个,每个请求的间隔时间是 0ms

  • 此时令牌并未来得及生成令牌,所以在第 61 个并发的时候请求,令牌用光被限流

请求的结果

通过下图可知与上面推测相符合,第 61 个请求被限流。

关键代码

总的来说,这个模块的流程比较简单,所以直接理解关键代码就 ok 了,实现起来也很容易。

限流器的抽象设计

预计实现四种限流器,目前本文内实现的是令牌桶限流器。限流器的抽象设计是经典的三层结构,也采用了模板方法的思想,也就是最上层的接口,实现一些公共方法与公共抽象的顶层抽象类,最后是每个限流器的独有逻辑放在各自类中来做。

限流业务的实现

这里贴出限流业务的核心方法,通过调用doFilter 方法实现判断是否需要进行限流。具体调用哪一种限流器通过这两个对象实现的:LimiterStrategyLimiterStrategy 分别是具体的限流算法与限流策略。

@Override
    public boolean doFilter(FlowControlConfig flowControlConfig) {
        if (Objects.isNull(flowControlConfig)) {
            log.error("[{}] 流控参数为空", this.getClass().getSimpleName());
            return true;
        }
        String key;
        boolean filterRes = true;
        try {
            key = generateRedisLimiterKey(flowControlConfig);
            LimiterStrategy limiterStrategy = getLimiterStrategyByCode(flowControlConfig.getLimiterType());
            LimiterPolicy limiterPolicy = getLimiterPolicyByCode(flowControlConfig.getLimiterType(), flowControlConfig);
            filterRes = limiterStrategy.access(key, limiterPolicy);
            if (!filterRes) {
                log.warn("Limiter Id:[{}],key :[{}]已达流量上限值:{},被限制请求!", flowControlConfig.getId(), key, flowControlConfig.getValue());
                // todo 接入消息告警
            }
        } catch (Exception e) {
            log.error("[{}] 限流器内部出现异常! 入参:{}", this.getClass().getSimpleName(), JSONObject.toJSON(flowControlConfig));
            e.printStackTrace();
        }
        return !filterRes;
    }
复制代码

令牌桶限流器算法的对象

package com.teavamc.rpcgateway.core.flow.limiter.policy;
import com.google.common.collect.Lists;
import java.util.List;

/**
 * 令牌桶限流器的执行对象
 *
 * @Package com.teavamc.rpcgateway.core.limiter.policy
 * @date 2021/1/28 上午11:09
 */
public class TokenBucketLimiterPolicy extends AbstractLimiterPolicy {

    /**
     * 限流时间间隔
     * (重置桶内令牌的时间间隔)
     */
    private final long resetBucketInterval;
    /**
     * 最大令牌数量
     */
    private final long bucketMaxTokens;

    /**
     * 初始可存储数量
     */
    private final long initTokens;

    /**
     * 每个令牌产生的时间
     */
    private final long intervalPerPermit;

    /**
     * 令牌桶对象的构造器
     * @param bucketMaxTokens 桶的令牌上限
     * @param resetBucketInterval 限流时间间隔
     * @param maxBurstTime 最大的突发流量的持续时间(通过计算)
     */
    public TokenBucketLimiterPolicy(long bucketMaxTokens, long resetBucketInterval, long maxBurstTime) {
        // 最大令牌数
        this.bucketMaxTokens = bucketMaxTokens;
        // 限流时间间隔
        this.resetBucketInterval = resetBucketInterval;
        // 令牌的产生间隔 = 限流时间 / 最大令牌数
        intervalPerPermit = resetBucketInterval / bucketMaxTokens;
        // 初始令牌数 = 最大的突发流量的持续时间 / 令牌产生间隔
        // 用 最大的突发流量的持续时间 计算的结果更加合理,并不是每次初始化都要将桶装满
        initTokens = Math.min(maxBurstTime / intervalPerPermit, bucketMaxTokens);
    }

    public long getResetBucketInterval() {
        return resetBucketInterval;
    }

    public long getBucketMaxTokens() {
        return bucketMaxTokens;
    }

    public long getInitTokens() {
        return initTokens;
    }

    public long getIntervalPerPermit() {
        return intervalPerPermit;
    }

    @Override
    public String[] toParams() {
        List<String > list = Lists.newArrayList();
        list.add(String.valueOf(getIntervalPerPermit()));
        list.add(String.valueOf(System.currentTimeMillis()));
        list.add(String.valueOf(getInitTokens()));
        list.add(String.valueOf(getBucketMaxTokens()));
        list.add(String.valueOf(getResetBucketInterval()));
        return list.toArray(new String[]{});
    }

}

复制代码

这个代码已经写得很明白了,东西也不多。但是构造器这里还是要理解一下,特别是maxBurstTime 这个字段,记录这个 api 经历的最大突发流量的时间。

Lua 脚本的解析

令牌桶的实现是通过 lua 来完成的,所以 lua 是核心逻辑。这是我这边使用的令牌桶方案,都加了注解,如果看不懂就多看几遍,还是看不明白就看最后我的流程图。

--[[
  1. key - 令牌桶的 key
  2. intervalPerTokens - 生成令牌的间隔(ms)
  3. curTime - 当前时间
  4. initTokens - 令牌桶初始化的令牌数
  5. bucketMaxTokens - 令牌桶的上限
  6. resetBucketInterval - 重置桶内令牌的时间间隔
  7. currentTokens - 当前桶内令牌数
  8. bucket - 当前 key 的令牌桶对象
]] --

local key = KEYS[1]
local intervalPerTokens = tonumber(ARGV[1])
local curTime = tonumber(ARGV[2])
local initTokens = tonumber(ARGV[3])
local bucketMaxTokens = tonumber(ARGV[4])
local resetBucketInterval = tonumber(ARGV[5])

local bucket = redis.call('hgetall', key)
local currentTokens

-- 若当前桶未初始化,先初始化令牌桶
if table.maxn(bucket) == 0 then
    -- 初始桶内令牌
    currentTokens = initTokens
    -- 设置桶最近的填充时间是当前
    redis.call('hset', key, 'lastRefillTime', curTime)
    -- 初始化令牌桶的过期时间, 设置为间隔的 1.5 倍
    redis.call('pexpire', key, resetBucketInterval * 1.5)

-- 若桶已初始化,开始计算桶内令牌
-- 为什么等于 4 ? 因为有两对 field, 加起来长度是 4
-- { "lastRefillTime(上一次更新时间)","curTime(更新时间值)","tokensRemaining(当前保留的令牌)","令牌数" }
elseif table.maxn(bucket) == 4 then

    -- 上次填充时间
    local lastRefillTime = tonumber(bucket[2])
    -- 剩余的令牌数
    local tokensRemaining = tonumber(bucket[4])

    -- 当前时间大于上次填充时间
    if curTime > lastRefillTime then

        -- 拿到当前时间与上次填充时间的时间间隔
        -- 举例理解: curTime = 2620 , lastRefillTime = 2000, intervalSinceLast = 620
        local intervalSinceLast = curTime - lastRefillTime

        -- 如果当前时间间隔 大于 令牌的生成间隔
        -- 举例理解: intervalSinceLast = 620, resetBucketInterval = 1000
        if intervalSinceLast > resetBucketInterval then

            -- 将当前令牌填充满
            currentTokens = initTokens

            -- 更新重新填充时间
            redis.call('hset', key, 'lastRefillTime', curTime)
            
        -- 如果当前时间间隔 小于 令牌的生成间隔
        else

            -- 可授予的令牌 = 向下取整数( 上次填充时间与当前时间的时间间隔 / 两个令牌许可之间的时间间隔 )
            -- 举例理解 : intervalPerTokens = 200 ms , 令牌间隔时间为 200ms
            --           intervalSinceLast = 620 ms , 当前距离上一个填充时间差为 620ms
            --           grantedTokens = 620/200 = 3.1 = 3
            local grantedTokens = math.floor(intervalSinceLast / intervalPerTokens)

            -- 可授予的令牌 > 0 时
            -- 举例理解 : grantedTokens = 620/200 = 3.1 = 3
            if grantedTokens > 0 then

                -- 生成的令牌 = 上次填充时间与当前时间的时间间隔 % 两个令牌许可之间的时间间隔
                -- 举例理解 : padMillis = 620%200 = 20
                --           curTime = 2620
                --           curTime - padMillis = 2600
                local padMillis = math.fmod(intervalSinceLast, intervalPerTokens)

                -- 将当前令牌桶更新到上一次生成时间
                redis.call('hset', key, 'lastRefillTime', curTime - padMillis)
            end

            -- 更新当前令牌桶中的令牌数
            -- Math.min(根据时间生成的令牌数 + 剩下的令牌数, 桶的限制) => 超出桶最大令牌的就丢弃
            currentTokens = math.min(grantedTokens + tokensRemaining, bucketMaxTokens)
        end
    else
        -- 如果当前时间小于或等于上次更新的时间, 说明刚刚初始化, 当前令牌数量等于桶内令牌数
        -- 不需要重新填充
        currentTokens = tokensRemaining
    end
end

-- 如果当前桶内令牌小于 0,抛出异常
assert(currentTokens >= 0)

-- 如果当前令牌 == 0 ,更新桶内令牌, 返回 0
if currentTokens == 0 then
    redis.call('hset', key, 'tokensRemaining', currentTokens)
    return 0
else
    -- 如果当前令牌 大于 0, 更新当前桶内的令牌 -1 , 再返回当前桶内令牌数
    redis.call('hset', key, 'tokensRemaining', currentTokens - 1)
    return currentTokens
end
复制代码

其实这个脚本很简单,一个 key 拥有一个令牌桶,令牌桶是通过 Redis 中的 Hash 数据类型进行储存的。每个令牌桶拥有两个 field,分别是上一次填充时间lastRefillTime与当前桶内令牌数量tokensRemaining

从脚本逻辑上来说,就分成了三个步骤,分别是:

  • 确认 key 的令牌桶是否存在,如果不存在就初始化。

  • 计算并更新当前令牌桶内的令牌数量:

    • 如果当前距离上次填充令牌的时间间隔超出重置时间,就重置令牌桶。

    • 计算距离上次填充的时间间隔是否超过了生产令牌的间隔时间,若大于间隔就计算生产了多少令牌与上次产生令牌的时间。

    • 若距离上次填充至今没有产生令牌就直接用。

  • 明确了当前桶内的令牌数之后,就判断是否放行:

    • 令牌等于 0,返回 0,不放行。

    • 令牌大于0,减少一个当前的桶内令牌,放行。

限流器的模拟使用

开启一个接口,模拟对接口并发调用。

@PostMapping(value = "/test")
    public void testFlowControl(@RequestBody FlowControlConfig controlConfig) {
        Long apiId = controlConfig.getId();
        log.info("接收到 ApiId :{} 的请求", apiId);
        apiRequestCount.put(apiId, apiRequestCount.getOrDefault(apiId, 0) + 1);
        // 执行限流
        boolean res = flowControl.doFilter(controlConfig);
        if (res) {
            apiRequestFailedCount.put(apiId, apiRequestFailedCount.getOrDefault(apiId, 0) + 1);
        } else {
            apiRequestSuccessCount.put(apiId, apiRequestSuccessCount.getOrDefault(apiId, 0) + 1);
        }
        // 处理结果
        int totalCnt = apiRequestCount.get(apiId);
        int successCnt = apiRequestSuccessCount.get(apiId) == null ? 0 : apiRequestSuccessCount.get(apiId);
        int failedCnt = apiRequestFailedCount.get(apiId) == null ? 0 : apiRequestFailedCount.get(apiId);
        log.info(" ApiId :{} 的请求是否被限流:{} | 共请求{}次,放行{}次,限流{}次", apiId, res, totalCnt, successCnt, failedCnt);
    }
复制代码

后续业务拓展需要考虑的点

  • 弹性限流怎么做?平滑限流怎么做?

  • 关于api网关的调用的耗时比的思考?

  • 网关的性能计算,怎么计算 qps,怎么计算怎么抗多少?

  • 怎么合理估算API 的性能,并设置合适的限流大小?

  • 怎么根据业务场景选择合适的限流方案?

最后结尾

第二篇文章,其实是写个自己看的,帮助自己查漏补缺。写成公开文章总要更加仔细,所以其实怎么看都是有益的,除非就是很费头发拔了。这边文章帮助我自己实现了 API 网关 DEMO中限流模块的一部分,我只是将分布式令牌桶的实现拿出来做成了一篇文章,限流模块的设计后续会分享。

代码地址

有兴趣的可以看看,因为是上班抽空写的,还不是很完善~

Github:github.com/teavmac/jav…

分类:
后端
标签: