Java本地缓存神器---Caffeine(一)

1,449 阅读7分钟

前言

 Caffeine是基于Java8的高性能缓存库,参考了Google guava的API,基于Guava Cache和ConcurrentLinkedHashMap的经验改进而来。

_Java本地缓存神器---Caffeine(一)
_

Java本地缓存神器---Caffeine(二)

性能对比

以下是官方的性能测试对比,官方地址:github.com/ben-manes/c…

1. 8个线程读,100%的读操作

2. 6个线程读,2个线程写,也就是75%的读操作,25%的写操作。

3. 8个线程写,100%的写操作

结论:从以上对比来看,其他缓存框架相比较Caffeine就是个渣渣。

Caffeine特性

1.限制缓存大小2.通过异步自动加载实体到缓存中3.基于大小的回收策略4.基于时间的回收策略5.基于引用的回收策略6.当向缓存中一个已经过时的元素进行访问的时候将会进行异步刷新7.key自动封装虚引用8.value自动封装弱引用或软引用9.实体过期或被删除的通知10.写入通知,可以将其传播到其他数据源中11.统计累计访问缓存

最佳实践

添加依赖

  <dependency>
       <groupId>com.github.ben-manes.caffeine</groupId>
       <artifactId>caffeine</artifactId>
       <version>2.8.2</version>
  </dependency>

1. 加载策略

  Caffeine提供了四种缓存添加策略:手动加载,自动加载,手动异步加载和自动异步加载。

(1) 手动添加

 public static void manualLoad() {
     Cache<String, String> cache = Caffeine.newBuilder()
             .expireAfterWrite(10, TimeUnit.MINUTES)
             .maximumSize(10_000)
             .build();
     //查找一个缓存元素,没有查找到的时候返回null
     String name = cache.getIfPresent("name");
     System.out.println("name:" + name);
     //查找缓存,如果缓存不存在则生成缓存元素,如果无法生成则返回null
     name = cache.get("name", k -> "小明");
     System.out.println("name:" + name);
     //添加或者更新一个缓存元素
     cache.put("address", "深圳");
     String address = cache.getIfPresent("address");
     System.out.println("address:" + address);
 }

(2) 自动加载

 private static void autoLoad() throws InterruptedException {
     LoadingCache<String, String> cache = Caffeine.newBuilder()
             .maximumSize(10_000)
             .expireAfterWrite(10, TimeUnit.MINUTES)
             .build(new CacheLoader<String, String>() {
                 @Nullable
                 @Override
                 public String load(@NonNull String s) throws Exception {
                     System.out.println("load:" + s);
                     return "小明";
                 }

                 @Override
                 public @NonNull Map<String, String> loadAll(@NonNull Iterable<? extends String> keys) throws Exception {
                     System.out.println("loadAll:" + keys);
                     Map<String, String> map = new HashMap<>();
                     map.put("phone", "13866668888");
                     map.put("address", "深圳");
                     return map;
                 }
             });
     //查找缓存,如果缓存不存在则生成缓存元素,如果无法生成则返回null
     String name = cache.get("name");
     System.out.println("name:" + name);
     //批量查找缓存,如果缓存不存在则生成缓存元素
     Map<String, String> graphs = cache.getAll(Arrays.asList("phone", "address"));
     System.out.println(graphs);
  }

(3) 手动异步加载

private static void manualAsynLoad() throws ExecutionException, InterruptedException {
   AsyncCache<String, String> cache = Caffeine.newBuilder()
          .expireAfterWrite(10, TimeUnit.MINUTES)
          .maximumSize(10_000)
          //可以用指定的线程池
          .executor(Executors.newSingleThreadExecutor())
          .buildAsync();
   //查找缓存元素,如果不存在,则异步生成
  CompletableFuture<String> graph = cache.get("name", new Function<String, String>() {
      @SneakyThrows
      @Override
      public String apply(String key) {
          System.out.println("key:" + key+",当前线程:"+Thread.currentThread().getName());
          //模仿从数据库获取值
          Thread.sleep(1000);
          return "小明";
      }
    });
  System.out.println("获取name之前_time:"+System.currentTimeMillis()/1000);
  String name = graph.get();
  System.out.println("获取name:"+name+",time:"+System.currentTimeMillis()/1000);
 }

(4) 自动异步加载

private static void autoAsynLoad() throws ExecutionException, InterruptedException {
    AsyncLoadingCache<String, String> cache = Caffeine.newBuilder()
           .maximumSize(10_000)
           .expireAfterWrite(10, TimeUnit.MINUTES)
           //你可以选择:去异步的封装一段同步操作来生成缓存元素
           .buildAsync(new AsyncCacheLoader<String, String>() {
               @Override
               public @NonNull CompletableFuture<String> asyncLoad(@NonNull String key, @NonNull Executor executor) {
                     System.out.println("自动异步加载_key:" + key+",当前线程:"+Thread.currentThread().getName());
                     return CompletableFuture.completedFuture("小明");
                 }
              });
           //也可以选择:构建一个异步缓存元素操作并返回一个future
           //.buildAsync((key, executor) -> createExpensiveGraphAsync(key, executor));
           //查找缓存元素,如果其不存在,将会异步进行生成
           cache.get("name").thenAccept(name->{
           System.out.println("name:" + name);
       });
    }

 private static CompletableFuture<String> createExpensiveGraphAsync(String key, Executor executor) {
     return CompletableFuture.supplyAsync(new Supplier<String>() {
         @Override
         public String get() {
             System.out.println(executor);
             System.out.println("key:" + key+",当前线程:"+Thread.currentThread().getName());
             return "小明";
         }
      }, executor);
}

2. 回收策略

  Caffeine提供了三种回收策略:基于容量回收、基于时间回收、基于引用回收。

(1) 基于容量回收策略

  基于大小回收策略有两种:一种是基于容量大小,一种是基于权重大小。两者只能取其一。

① 基于容量--maximumSize

  为缓存容量指定特定的大小,Caffeine.maximumSize(long)。当缓存容量超过指定的大小,缓存将尝试逐出最近或经常未使用的条目。

public static void main(String[] args) throws InterruptedException {
   Cache<String, String> cache = Caffeine.newBuilder()
           .maximumSize(1)
           .removalListener((String key, Object value, RemovalCause cause) ->
                   System.out.printf("Key %s was removed (%s)%n", key, cause))
           .build();
   cache.put("name", "小明");
   System.out.println("name:" + cache.getIfPresent("name") + ",缓存容量:" + cache.estimatedSize());
   cache.put("address", "中国");
   Thread.sleep(2000);
   System.out.println("name:" + cache.getIfPresent("name") + ",缓存容量:" + cache.estimatedSize());
}

② 基于权重--maximumWeight

用Caffeine.maximumWeight(long)指定权重大小,通过Caffeine.weigher(Weigher)方法自定义计算权重方式。

class Person{
        Integer age;
        String name;
}
public static void main(String[] args) throws InterruptedException {
   //初始化缓存,设置最大权重为20
   Cache<Integer, Integer> cache = Caffeine.newBuilder()
           .maximumWeight(20)
           .weigher((String key, Person value)-> value.getAge())
            .removalListener((Integer key, Object value, RemovalCause cause) ->
                    System.out.printf("Key %s was removed (%s)%n", key, cause))
            .build();

   cache.put(100, 10);
   //打印缓存个数,结果为1
   System.out.println(cache.estimatedSize());
   cache.put(200, 20);
   //稍微休眠一秒
   Thread.sleep(1000);
   //打印缓存个数,结果为1
   System.out.println(cache.estimatedSize());
}

(2) 基于时间策略

① 写入时间--expireAfterWrite

  在最后一次写入开始计时,到达指定的时间后过期清除。如果一直写入,那么一直不会过期。

private static void writeFixedTime() throws InterruptedException {
   //在最后一次访问或者写入后开始计时,在指定的时间后过期。
   LoadingCache<String, String> graphs = Caffeine.newBuilder()
           .expireAfterWrite(1, TimeUnit.SECONDS)
           .removalListener((String key, Object value, RemovalCause cause) ->
                   System.out.printf("Key %s was removed (%s)%n", key, cause))
           .build(key -> createExpensiveGraph(key));
   String name = graphs.get("name");
   System.out.println("第一次获取name:" + name);
   name = graphs.get("name");
   System.out.println("第二次获取name:" + name);
   Thread.sleep(2000);
   name = graphs.get("name");
   System.out.println("第三次延迟2秒后获取name:" + name);
}
private static String createExpensiveGraph(String key) {
     System.out.println("重新自动加载数据");
     return "小明";
}

② 写入和访问时间--expireAfterAccess

  在最后一次写入或访问开始计时,在指定时间后过期清除。如果一直访问或写入,那么一直不会过期。

private static void accessFixedTime() throws InterruptedException {
   //在最后一次访问或者写入后开始计时,在指定的时间后过期。
  LoadingCache<String, String> graphs = Caffeine.newBuilder()
          .expireAfterAccess(3, TimeUnit.SECONDS)
          .removalListener((String key, Object value, RemovalCause cause) ->
                   System.out.printf("Key %s was removed (%s)%n", key, cause))
          .build(key -> createExpensiveGraph(key));
  String name = graphs.get("name");
  System.out.println("第一次获取name:" + name);
  name = graphs.get("name");
  System.out.println("第二次获取name:" + name);
  Thread.sleep(2000);
  name = graphs.get("name");
  System.out.println("第三次延迟2秒后获取name:" + name);
}

private static String createExpensiveGraph(String key) {
    System.out.println("重新自动加载数据");
    return "小明";
}

③ 自定义时间--expireAfter

  自定义策略,由Expire实现独自计算时间。分别计算新增、更新、读取时间。

private static void customTime() throws InterruptedException {
    LoadingCache<String, String> graphs = Caffeine.newBuilder()
          .removalListener((String key, Object value, RemovalCause cause) ->
                  System.out.printf("Key %s was removed (%s)%n", key, cause))
          .expireAfter(new Expiry<String, String>() {
              @Override
              public long expireAfterCreate(@NonNull String key, @NonNull String value, long currentTime) {
                  //这里的currentTime由Ticker提供,默认情况下与系统时间无关,单位为纳秒
                  System.out.println(String.format("expireAfterCreate----key:%s,value:%s,currentTime:%d", key, value, currentTime));
                  return TimeUnit.SECONDS.toNanos(10);
              }

              @Override
              public long expireAfterUpdate(@NonNull String key, @NonNull String value, long currentTime, @NonNegative long currentDuration) {
                  //这里的currentTime由Ticker提供,默认情况下与系统时间无关,单位为纳秒
                  System.out.println(String.format("expireAfterUpdate----key:%s,value:%s,currentTime:%d,currentDuration:%d", key, value, currentTime,currentDuration));
                  return TimeUnit.SECONDS.toNanos(3);
              }

              @Override
              public long expireAfterRead(@NonNull String key, @NonNull String value, long currentTime, @NonNegative long currentDuration) {
                  //这里的currentTime由Ticker提供,默认情况下与系统时间无关,单位为纳秒
                  System.out.println(String.format("expireAfterRead----key:%s,value:%s,currentTime:%d,currentDuration:%d", key, value, currentTime,currentDuration));
                  return currentDuration;
               }
          })

          .build(key -> createExpensiveGraph(key));
    String name = graphs.get("name");
    System.out.println("第一次获取name:" + name);
    name = graphs.get("name");
    System.out.println("第二次获取name:" + name);
    Thread.sleep(5000);
    name = graphs.get("name");
    System.out.println("第三次延迟5秒后获取name:" + name);
    Thread.sleep(5000);
    name = graphs.get("name");
    System.out.println("第五次延迟5秒后获取name:" + name);
}
    
private static String createExpensiveGraph(String key) {
    System.out.println("重新自动加载数据");
    return "小明";
}

(3) 基于引用策略

  异步加载的方式不支持引用回收策略

① 软引用

  当GC并且内存不足时,会触发软引用回收策略。

设置jvm启动时-XX:+PrintGCDetails -Xmx100m 参数,可以看GC日志打印会触发软引用的回收策略。

private static void softValues() throws InterruptedException {
    //当进行GC的时候进行驱逐
    LoadingCache<String, byte[]> cache = Caffeine.newBuilder()
           .softValues()
           .removalListener((String key, Object value, RemovalCause cause) ->
                   System.out.printf("Key %s was removed (%s)%n", key, cause))
           .build(key -> loadDB(key));
    System.out.println("1");
    cache.put("name1", new byte[1024 * 1024*50]);
    System.gc();
    System.out.println("2");
    Thread.sleep(5000);
    cache.put("name2", new byte[1024 * 1024*50]);
    System.gc();
    System.out.println("3");
    Thread.sleep(5000);
    cache.put("name3", new byte[1024 * 1024*50]);
    System.gc();
    System.out.println("4");
    Thread.sleep(5000);
    cache.put("name4", new byte[1024 * 1024*50]);
    System.gc();
    Thread.sleep(5000);
}

private static byte[] loadDB(String key) {
    System.out.println("重新自动加载数据");
    return new byte[1024*1024];
}

② 弱引用

  当GC时,会触发弱引用回收策略。   

设置jvm启动时-XX:+PrintGCDetails -Xmx100m 参数,可以看GC日志打印会触发弱引用的回收策略。

private static void weakKeys() throws InterruptedException {
    LoadingCache<String, byte[]> cache = Caffeine.newBuilder()
           .weakKeys()
           .weakValues()
           .removalListener((String key, Object value, RemovalCause cause) ->
                   System.out.printf("Key %s was removed (%s)%n", key, cause))
           .build(key -> loadDB(key));
    System.out.println("添加name1");
    cache.put("name1", new byte[1024 * 1024]);
    System.gc();
    System.out.println("添加name2");
    Thread.sleep(5000);
    cache.put("name2", new byte[1024 * 1024]);
    System.gc();
    System.out.println("添加name3");
    Thread.sleep(5000);
    cache.put("name3", new byte[1024 * 1024]);
    System.gc();
    Thread.sleep(5000);
}

private static byte[] loadDB(String key) {
    System.out.println("重新自动加载数据");
    return new byte[1024*1024];
}

未完待续

欢迎大家关注我的微信公众号:CodingTao