前言
Caffeine是基于Java8的高性能缓存库,参考了Google guava的API,基于Guava Cache和ConcurrentLinkedHashMap的经验改进而来。
性能对比
以下是官方的性能测试对比,官方地址:github.com/ben-manes/c…
1. 8个线程读,100%的读操作
2. 6个线程读,2个线程写,也就是75%的读操作,25%的写操作。
3. 8个线程写,100%的写操作
结论:从以上对比来看,其他缓存框架相比较Caffeine就是个渣渣。
Caffeine特性
1.限制缓存大小2.通过异步自动加载实体到缓存中3.基于大小的回收策略4.基于时间的回收策略5.基于引用的回收策略6.当向缓存中一个已经过时的元素进行访问的时候将会进行异步刷新7.key自动封装虚引用8.value自动封装弱引用或软引用9.实体过期或被删除的通知10.写入通知,可以将其传播到其他数据源中11.统计累计访问缓存
最佳实践
添加依赖
<dependency>
<groupId>com.github.ben-manes.caffeine</groupId>
<artifactId>caffeine</artifactId>
<version>2.8.2</version>
</dependency>
1. 加载策略
Caffeine提供了四种缓存添加策略:手动加载,自动加载,手动异步加载和自动异步加载。
(1) 手动添加
public static void manualLoad() {
Cache<String, String> cache = Caffeine.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES)
.maximumSize(10_000)
.build();
//查找一个缓存元素,没有查找到的时候返回null
String name = cache.getIfPresent("name");
System.out.println("name:" + name);
//查找缓存,如果缓存不存在则生成缓存元素,如果无法生成则返回null
name = cache.get("name", k -> "小明");
System.out.println("name:" + name);
//添加或者更新一个缓存元素
cache.put("address", "深圳");
String address = cache.getIfPresent("address");
System.out.println("address:" + address);
}
(2) 自动加载
private static void autoLoad() throws InterruptedException {
LoadingCache<String, String> cache = Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(10, TimeUnit.MINUTES)
.build(new CacheLoader<String, String>() {
@Nullable
@Override
public String load(@NonNull String s) throws Exception {
System.out.println("load:" + s);
return "小明";
}
@Override
public @NonNull Map<String, String> loadAll(@NonNull Iterable<? extends String> keys) throws Exception {
System.out.println("loadAll:" + keys);
Map<String, String> map = new HashMap<>();
map.put("phone", "13866668888");
map.put("address", "深圳");
return map;
}
});
//查找缓存,如果缓存不存在则生成缓存元素,如果无法生成则返回null
String name = cache.get("name");
System.out.println("name:" + name);
//批量查找缓存,如果缓存不存在则生成缓存元素
Map<String, String> graphs = cache.getAll(Arrays.asList("phone", "address"));
System.out.println(graphs);
}
(3) 手动异步加载
private static void manualAsynLoad() throws ExecutionException, InterruptedException {
AsyncCache<String, String> cache = Caffeine.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES)
.maximumSize(10_000)
//可以用指定的线程池
.executor(Executors.newSingleThreadExecutor())
.buildAsync();
//查找缓存元素,如果不存在,则异步生成
CompletableFuture<String> graph = cache.get("name", new Function<String, String>() {
@SneakyThrows
@Override
public String apply(String key) {
System.out.println("key:" + key+",当前线程:"+Thread.currentThread().getName());
//模仿从数据库获取值
Thread.sleep(1000);
return "小明";
}
});
System.out.println("获取name之前_time:"+System.currentTimeMillis()/1000);
String name = graph.get();
System.out.println("获取name:"+name+",time:"+System.currentTimeMillis()/1000);
}
(4) 自动异步加载
private static void autoAsynLoad() throws ExecutionException, InterruptedException {
AsyncLoadingCache<String, String> cache = Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(10, TimeUnit.MINUTES)
//你可以选择:去异步的封装一段同步操作来生成缓存元素
.buildAsync(new AsyncCacheLoader<String, String>() {
@Override
public @NonNull CompletableFuture<String> asyncLoad(@NonNull String key, @NonNull Executor executor) {
System.out.println("自动异步加载_key:" + key+",当前线程:"+Thread.currentThread().getName());
return CompletableFuture.completedFuture("小明");
}
});
//也可以选择:构建一个异步缓存元素操作并返回一个future
//.buildAsync((key, executor) -> createExpensiveGraphAsync(key, executor));
//查找缓存元素,如果其不存在,将会异步进行生成
cache.get("name").thenAccept(name->{
System.out.println("name:" + name);
});
}
private static CompletableFuture<String> createExpensiveGraphAsync(String key, Executor executor) {
return CompletableFuture.supplyAsync(new Supplier<String>() {
@Override
public String get() {
System.out.println(executor);
System.out.println("key:" + key+",当前线程:"+Thread.currentThread().getName());
return "小明";
}
}, executor);
}
2. 回收策略
Caffeine提供了三种回收策略:基于容量回收、基于时间回收、基于引用回收。
(1) 基于容量回收策略
基于大小回收策略有两种:一种是基于容量大小,一种是基于权重大小。两者只能取其一。
① 基于容量--maximumSize
为缓存容量指定特定的大小,Caffeine.maximumSize(long)。当缓存容量超过指定的大小,缓存将尝试逐出最近或经常未使用的条目。
public static void main(String[] args) throws InterruptedException {
Cache<String, String> cache = Caffeine.newBuilder()
.maximumSize(1)
.removalListener((String key, Object value, RemovalCause cause) ->
System.out.printf("Key %s was removed (%s)%n", key, cause))
.build();
cache.put("name", "小明");
System.out.println("name:" + cache.getIfPresent("name") + ",缓存容量:" + cache.estimatedSize());
cache.put("address", "中国");
Thread.sleep(2000);
System.out.println("name:" + cache.getIfPresent("name") + ",缓存容量:" + cache.estimatedSize());
}
② 基于权重--maximumWeight
用Caffeine.maximumWeight(long)指定权重大小,通过Caffeine.weigher(Weigher)方法自定义计算权重方式。
class Person{
Integer age;
String name;
}
public static void main(String[] args) throws InterruptedException {
//初始化缓存,设置最大权重为20
Cache<Integer, Integer> cache = Caffeine.newBuilder()
.maximumWeight(20)
.weigher((String key, Person value)-> value.getAge())
.removalListener((Integer key, Object value, RemovalCause cause) ->
System.out.printf("Key %s was removed (%s)%n", key, cause))
.build();
cache.put(100, 10);
//打印缓存个数,结果为1
System.out.println(cache.estimatedSize());
cache.put(200, 20);
//稍微休眠一秒
Thread.sleep(1000);
//打印缓存个数,结果为1
System.out.println(cache.estimatedSize());
}
(2) 基于时间策略
① 写入时间--expireAfterWrite
在最后一次写入开始计时,到达指定的时间后过期清除。如果一直写入,那么一直不会过期。
private static void writeFixedTime() throws InterruptedException {
//在最后一次访问或者写入后开始计时,在指定的时间后过期。
LoadingCache<String, String> graphs = Caffeine.newBuilder()
.expireAfterWrite(1, TimeUnit.SECONDS)
.removalListener((String key, Object value, RemovalCause cause) ->
System.out.printf("Key %s was removed (%s)%n", key, cause))
.build(key -> createExpensiveGraph(key));
String name = graphs.get("name");
System.out.println("第一次获取name:" + name);
name = graphs.get("name");
System.out.println("第二次获取name:" + name);
Thread.sleep(2000);
name = graphs.get("name");
System.out.println("第三次延迟2秒后获取name:" + name);
}
private static String createExpensiveGraph(String key) {
System.out.println("重新自动加载数据");
return "小明";
}
② 写入和访问时间--expireAfterAccess
在最后一次写入或访问开始计时,在指定时间后过期清除。如果一直访问或写入,那么一直不会过期。
private static void accessFixedTime() throws InterruptedException {
//在最后一次访问或者写入后开始计时,在指定的时间后过期。
LoadingCache<String, String> graphs = Caffeine.newBuilder()
.expireAfterAccess(3, TimeUnit.SECONDS)
.removalListener((String key, Object value, RemovalCause cause) ->
System.out.printf("Key %s was removed (%s)%n", key, cause))
.build(key -> createExpensiveGraph(key));
String name = graphs.get("name");
System.out.println("第一次获取name:" + name);
name = graphs.get("name");
System.out.println("第二次获取name:" + name);
Thread.sleep(2000);
name = graphs.get("name");
System.out.println("第三次延迟2秒后获取name:" + name);
}
private static String createExpensiveGraph(String key) {
System.out.println("重新自动加载数据");
return "小明";
}
③ 自定义时间--expireAfter
自定义策略,由Expire实现独自计算时间。分别计算新增、更新、读取时间。
private static void customTime() throws InterruptedException {
LoadingCache<String, String> graphs = Caffeine.newBuilder()
.removalListener((String key, Object value, RemovalCause cause) ->
System.out.printf("Key %s was removed (%s)%n", key, cause))
.expireAfter(new Expiry<String, String>() {
@Override
public long expireAfterCreate(@NonNull String key, @NonNull String value, long currentTime) {
//这里的currentTime由Ticker提供,默认情况下与系统时间无关,单位为纳秒
System.out.println(String.format("expireAfterCreate----key:%s,value:%s,currentTime:%d", key, value, currentTime));
return TimeUnit.SECONDS.toNanos(10);
}
@Override
public long expireAfterUpdate(@NonNull String key, @NonNull String value, long currentTime, @NonNegative long currentDuration) {
//这里的currentTime由Ticker提供,默认情况下与系统时间无关,单位为纳秒
System.out.println(String.format("expireAfterUpdate----key:%s,value:%s,currentTime:%d,currentDuration:%d", key, value, currentTime,currentDuration));
return TimeUnit.SECONDS.toNanos(3);
}
@Override
public long expireAfterRead(@NonNull String key, @NonNull String value, long currentTime, @NonNegative long currentDuration) {
//这里的currentTime由Ticker提供,默认情况下与系统时间无关,单位为纳秒
System.out.println(String.format("expireAfterRead----key:%s,value:%s,currentTime:%d,currentDuration:%d", key, value, currentTime,currentDuration));
return currentDuration;
}
})
.build(key -> createExpensiveGraph(key));
String name = graphs.get("name");
System.out.println("第一次获取name:" + name);
name = graphs.get("name");
System.out.println("第二次获取name:" + name);
Thread.sleep(5000);
name = graphs.get("name");
System.out.println("第三次延迟5秒后获取name:" + name);
Thread.sleep(5000);
name = graphs.get("name");
System.out.println("第五次延迟5秒后获取name:" + name);
}
private static String createExpensiveGraph(String key) {
System.out.println("重新自动加载数据");
return "小明";
}
(3) 基于引用策略
异步加载的方式不支持引用回收策略
① 软引用
当GC并且内存不足时,会触发软引用回收策略。
设置jvm启动时-XX:+PrintGCDetails -Xmx100m 参数,可以看GC日志打印会触发软引用的回收策略。
private static void softValues() throws InterruptedException {
//当进行GC的时候进行驱逐
LoadingCache<String, byte[]> cache = Caffeine.newBuilder()
.softValues()
.removalListener((String key, Object value, RemovalCause cause) ->
System.out.printf("Key %s was removed (%s)%n", key, cause))
.build(key -> loadDB(key));
System.out.println("1");
cache.put("name1", new byte[1024 * 1024*50]);
System.gc();
System.out.println("2");
Thread.sleep(5000);
cache.put("name2", new byte[1024 * 1024*50]);
System.gc();
System.out.println("3");
Thread.sleep(5000);
cache.put("name3", new byte[1024 * 1024*50]);
System.gc();
System.out.println("4");
Thread.sleep(5000);
cache.put("name4", new byte[1024 * 1024*50]);
System.gc();
Thread.sleep(5000);
}
private static byte[] loadDB(String key) {
System.out.println("重新自动加载数据");
return new byte[1024*1024];
}
② 弱引用
当GC时,会触发弱引用回收策略。
设置jvm启动时-XX:+PrintGCDetails -Xmx100m 参数,可以看GC日志打印会触发弱引用的回收策略。
private static void weakKeys() throws InterruptedException {
LoadingCache<String, byte[]> cache = Caffeine.newBuilder()
.weakKeys()
.weakValues()
.removalListener((String key, Object value, RemovalCause cause) ->
System.out.printf("Key %s was removed (%s)%n", key, cause))
.build(key -> loadDB(key));
System.out.println("添加name1");
cache.put("name1", new byte[1024 * 1024]);
System.gc();
System.out.println("添加name2");
Thread.sleep(5000);
cache.put("name2", new byte[1024 * 1024]);
System.gc();
System.out.println("添加name3");
Thread.sleep(5000);
cache.put("name3", new byte[1024 * 1024]);
System.gc();
Thread.sleep(5000);
}
private static byte[] loadDB(String key) {
System.out.println("重新自动加载数据");
return new byte[1024*1024];
}
未完待续
欢迎大家关注我的微信公众号:CodingTao