小六六学大数据之 Hive

301 阅读20分钟

前言

文本已收录至我的GitHub仓库,欢迎Star:github.com/bin39232820…
种一棵树最好的时间是十年前,其次是现在

叨絮

hadoop 完成之后,就是hive了。。今天我们就来看看hive

什么是 Hive

  • Hive:由 Facebook 开源用于解决海量结构化日志的数据统计。
  • Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并

提供类 SQL 查询功能。 本质是:将 HQL 转化成 MapReduce 程序

  • Hive 处理的数据存储在 HDFS
  • Hive 分析数据底层的实现是 MapReduce
  • 执行程序运行在 Yarn 上

Hive 的优缺点

  • 优点
    • 操作接口采用类 SQL 语法,提供快速开发的能力(简单、容易上手)
    • 避免了去写 MapReduce,减少开发人员的学习成本。
    • Hive 的执行延迟比较高,因此 Hive 常用于数据分析,对实时性要求不高的场合;
    • Hive 优势在于处理大数据,对于处理小数据没有优势,因为 Hive 的执行延迟比较高。
    • Hive 支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
  • 缺点
    • Hive 的 HQL 表达能力有限,迭代式算法无法表达,数据挖掘方面不擅长

    • Hive 的效率比较低,Hive 自动生成的 MapReduce 作业,通常情况下不够智能化,Hive 调优比较困难,粒度较粗

Hive 架构原理

如图中所示,Hive 通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用 自己的 Driver,结合元数据(MetaStore),将这些指令翻译成 MapReduce,提交到 Hadoop 中 执行,最后,将执行返回的结果输出到用户交互接口。

  • 用户接口:Client

CLI(hive shell)、JDBC/ODBC(java 访问 hive)、WEBUI(浏览器访问 hive)

  • 元数据:Metastore

元数据包括:表名、表所属的数据库(默认是 default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;默认存储在自带的 derby 数据库中,推荐使用 MySQL 存储 Metastore

  • Hadoop

使用 HDFS 进行存储,使用 MapReduce 进行计算。

  • 驱动器:Driver

解析器(SQL Parser):将 SQL 字符串转换成抽象语法树 AST,这一步一般都用第三方工具库完成,比如 antlr;对 AST 进行语法分析,比如表是否存在、字段是否存在、SQL 语义是否有误。

编译器(Physical Plan):将 AST 编译生成逻辑执行计划

优化器(Query Optimizer):对逻辑执行计划进行优化

执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于 Hive 来说,就是 MR/Spark。

Hive 和数据库比较

由于 Hive 采用了类似 SQL 的查询语言 HQL(Hive Query Language),因此很容易 将 Hive 理解为数据库。其实从结构上来看,Hive 和数据库除了拥有类似的查询语言,再无 类似之处。本文将从多个方面来阐述 Hive 和数据库的差异。数据库可以用在 Online 的应用 中,但是 Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。

查询语言

由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的 查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。

数据存储位置

Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则 可以将数据保存在块设备或者本地文件系统中。

数据更新

由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不建议对数据的改写,所有的数据都是在加载的时候确定好的。而数据库中的数据通常是 需 要 经 常 进 行 修 改 的 , 因 此 可 以 使 用 INSERT INTO … VALUES 添加数据,使 用 UPDATE … SET 修改数据。

索引

Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此 也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力 扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因 此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针 对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的 效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。

执行

Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的。而数据库通常 有自己的执行引擎。

执行延迟

Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个 导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟, 因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟 较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力 的时候,Hive 的并行计算显然能体现出优势。

可扩展性

由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是 一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009 年的规模在 4000 台节点左右)。而数 据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理 论上的扩展能力也只有 100 台左右。

数据规模

由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模 的数据;对应的,数据库可以支持的数据规模较小

Hive 安装

Hive数据类型

基本数据类型

对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储2GB的字符数。

集合数据类型

Hive有三种复杂数据类型ARRAY、MAP 和STRUCT。ARRAY和MAP与Java中的Array和Map类似,而STRUCT与C语言中的Struct类似,它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。

Hive DDL 和DML

类似于Sql,但是也有和sql不一样的地方,这边我就不一一的讲了,我只是把学习路线缕清楚

Hive 的查询语法和函数

这边也不一一讲述了

数据仓库

什么是数据仓库

数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。

数据仓库能干什么?

  • 年度销售目标的指定,需要根据以往的历史报表进行决策,不能拍脑袋。
  • 如何优化业务流程

数据仓库的特点

  • 数据仓库的数据是面向主题的

传统数据库面向应用进行数据组织的特点相对应,数据仓库中的数据是面向主题进行组织的。什么是主题呢?首先,主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。面向主题的数据组织方式,就是在较高层次上对分析对象的数据的一个完整、一致的描述,能完整、统一地刻划各个分析对象所涉及的企业的各项数据,以及数据之间的联系。所谓较高层次是相对面向应用的数据组织方式而言的,是指按照主题进行数据组织的方式具有更高的数据抽象级别。

  • 数据仓库的数据是集成的

数据仓库的数据是从原有的分散的数据库数据抽取来的。操作型数据与DSS分析型数据之间差别甚大。第一,数据仓库的每一个主题所对应的源数据在原有的各分散数据库中有许多重复和不一致的地方,且来源于不同的联机系统的数据都和不同的应用逻辑捆绑在一起;第二,数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一 步,所要完成的工作有:(1)要统一源数据中所有矛盾之处,如字段的同名异义、异名同义、单位不统一、字长不一致等。(2)进行数据综合和计算。数据仓库中的数据综合工作可以在从原有数据库抽取数据时生成,但许多是在数据仓库内部生成的,即进入数据仓库以后进行综合生成的。

  • 数据仓库的数据是不可更新的

数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一般情况下并不进行修改操作。数据仓库的数据反映的是一段相当长的时间内历史数据的内容,是不同时点的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据,而不是联机处理的数据。数据库中进行联机处理的数据经过集成输入到数据仓库中,一旦数据仓库存放的数据已经超过数据仓库的数据存储期限,这些数据将从当前的数据仓库中删去。因为数据仓库只进行数据查询操作,所以数据仓库管理系统相比数据库管理系统而言要简单得多。数据库管理系统中许多技术难点,如完整性保护、并发控制等等,在数据仓库的管理中几乎可以省去。但是由于数据仓库的查询数据量往往很大,所以就对数据查询提出了更高的要求,它要求采用各种复杂的索引技术;同时由于数据仓库面向的是商业企业的高层管理者,他们会对数据查询的界面友好性和数据表示提出更高的要求。

  • 数据仓库的数据是随时间不断变化的

数据仓库中的数据不可更新是针对应用来说的,也就是说,数据仓库的用户进行分析处理时是不进行数据更新操作的。但并不是说,在从数据集成输入数据仓库开始到最终被删除的整个数据生存周期中,所有的数据仓库数据都是永远不变的。数据仓库的数据是随时间的变化而不断变化的,这是数据仓库数据的第四个特征。这一特征表现在以下3方面:(1)数据仓库随时间变化不断增加新的数据内容。数据仓库系统必须不断捕捉OLTP数据库中变化的数据,追加到数据仓库中去,也就是要不断地生成OLTP数据库的快照,经统一集成后增加到数据仓库中去;但对于确实不再变化的数据库快照,如果捕捉到新的变化数据,则只生成一个新的数据库快照增加进去,而不会对原有的数据库快照进行修改。(2)数据仓库随时间变化不断删去旧的数据内容。数据仓库的数据也有存储期限,一旦超过了这一期限,过期数据就要被删除。只是数据仓库内的数据时限要远远长于操作型环境中的数据时限。在操作型环境中一般只保存有60到90天的数据,而在数据仓库中则需要保存较长时限的数据(如5~10年),以适应DSS进行趋势分析的要求。(3)数据仓库中包含有大量的综合数据,这些综合数据中很多跟时间有关,如数据经常按照时间段进行综合,或隔一定的时间片进行抽样等等。这些数据要随着时间的变化不断地进行重新综合。因此,数据仓库的数据特征都包含时间项,以标明数据的历史时期。

数据库与数据仓库的区别

了解数据库与数据仓库的区别之前,首先掌握三个概念。数据库软件、数据库、数据仓库。

数据库软件

是一种软件,可以看得见,可以操作。用来实现数据库逻辑功能。属于物理层。

数据库

是一种逻辑概念,用来存放数据的仓库。通过数据库软件来实现。数据库由很多表组成,表是二维的,一张表里可以有很多字段。字段一字排开,对应的数据就一行一行写入表中。数据库的表,在于能够用二维表现多维关系。目前市面上流行的数据库都是二维数据库。如:Oracle、DB2、MySQL、Sybase、MS SQL Server等。

数据仓库

是数据库概念的升级。从逻辑上理解,数据库和数据仓库没有区别,都是通过数据库软件实现的存放数据的地方,只不过从数据量来说,数据仓库要比数据库更庞大得多。数据仓库主要用于数据挖掘和数据分析,辅助领导做决策。在IT的架构体系中,数据库是必须存在的。必须要有地方存放数据。比如现在的网购,淘宝,京东等等。物品的存货数量,货品的价格,用户的账户余额之类的。这些数据都是存放在后台数据库中。或者最简单理解,我们现在微博,QQ等账户的用户名和密码。在后台数据库必然有一张user表,字段起码有两个,即用户名和密码,然后我们的数据就一行一行的存在表上面。当我们登录的时候,我们填写了用户名和密码,这些数据就会被传回到后台去,去跟表上面的数据匹配,匹配成功了,你就能登录了。匹配不成功就会报错说密码错误或者没有此用户名等。这个就是数据库,数据库在生产环境就是用来干活的。凡是跟业务应用挂钩的,我们都使用数据库。

数据仓库则是BI下的其中一种技术。由于数据库是跟业务应用挂钩的,所以一个数据库不可能装下一家公司的所有数据。数据库的表设计往往是针对某一个应用进行设计的。比如刚才那个登录的功能,这张user表上就只有这两个字段,没有别的字段了。但是这张表符合应用,没有问题。但是这张表不符合分析。比如我想知道在哪个时间段,用户登录的量最多?哪个用户一年购物最多?诸如此类的指标。那就要重新设计数据库的表结构了。对于数据分析和数据挖掘,我们引入数据仓库概念。数据仓库的表结构是依照分析需求,分析维度,分析指标进行设计的。

数据库与数据仓库的区别实际讲的是OLTP与OLAP的区别。

操作型处理

操作型处理,叫联机事务处理OLTP(On-Line Transaction Processing),也可以称面向交易的处理系统,它是针对具体业务在数据库联机的日常操作,通常对少数记录进行查询、修改。用户较为关心操作的响应时间、数据的安全性、完整性和并发支持的用户数等问题。传统的数据库系统作为数据管理的主要手段,主要用于操作型处理。

分析型处理

分析型处理,叫联机分析处理OLAP(On-Line Analytical Processing)一般针对某些主题的历史数据进行分析,支持管理决策。

数据仓库架构分层

数据仓库标准上可以分为四层:ODS(临时存储层)、PDW(数据仓库层)、DM(数据集市层)、APP(应用层)。

ODS层

为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。一般来说ODS层的数据和源系统的数据是同构的,主要目的是简化后续数据加工处理的工作。从数粒度上来说ODS层的数据粒度是最细的。ODS层的表通常包括两类,一个用于存储当前需要加载的数据,一个用于存储处理完后的历史数据。历史数据一般保存3-6个月后需要清除,以节省空间。但不同的项目要区别对待,如果源系统的数据量不大,可以保留更长的时间,甚至全量保存;

PDW层

为数据仓库层,PDW层的数据应该是一致的、准确的、干净的数据,即对源系统数据进行了清洗(去除了杂质)后的数据。这一层的数据一般是遵循数据库第三范式的,其数据粒度通常和ODS的粒度相同。在PDW层会保存BI系统中所有的历史数据,例如保存10年的数据。

DM层

为数据集市层,这层数据是面向主题来组织数据的,通常是星形或雪花结构的数据。从数据粒度来说,这层的数据是轻度汇总级的数据,已经不存在明细数据了。从数据的时间跨度来说,通常是PDW层的一部分,主要的目的是为了满足用户分析的需求,而从分析的角度来说,用户通常只需要分析近几年(如近三年的数据)的即可。从数据的广度来说,仍然覆盖了所有业务数据。

APP层

为应用层,这层数据是完全为了满足具体的分析需求而构建的数据,也是星形或雪花结构的数据。从数据粒度来说是高度汇总的数据。从数据的广度来说,则并不一定会覆盖所有业务数据,而是DM层数据的一个真子集,从某种意义上来说是DM层数据的一个重复。从极端情况来说,可以为每一张报表在APP层构建一个模型来支持,达到以空间换时间的目的数据仓库的标准分层只是一个建议性质的标准,实际实施时需要根据实际情况确定数据仓库的分层,不同类型的数据也可能采取不同的分层方法。

为什么要对数据仓库分层

  • 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据。
  • 如果不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。
  • 通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。

星型模型和雪花模型

在多维分析的商业智能解决方案中,根据事实表和维度表的关系,又可将常见的模型分为星型模型和雪花型模型。在设计逻辑型数据的模型的时候,就应考虑数据是按照星型模型还是雪花型模型进行组织。

星型模型

当所有维表都直接连接到“事实表”上时,整个图解就像星星一样,故将该模型称为星型模型。

星型架构是一种非正规化的结构,多维数据集的每一个维度都直接与事实表相连接,不存在渐变维度,所以数据有一定的冗余,如在地域维度表中,存在国家A省B的城市C以及国家A省B的城市D两条记录,那么国家A和省B的信息分别存储了两次,即存在冗余。

雪花模型

当有一个或多个维表没有直接连接到事实表上,而是通过其他维表连接到事实表上时,其图解就像多个雪花连接在一起,故称雪花模型。雪花模型是对星型模型的扩展。它对星型模型的维表进一步层次化,原有的各维表可能被扩展为小的事实表,形成一些局部的"层次" 区域,这些被分解的表都连接到主维度表而不是事实表。如图所示,将地域维表又分解为国家,省份,城市等维表。它的优点是:通过最大限度地减少数据存储量以及联合较小的维表来改善查询性能。雪花型结构去除了数据冗余。

星型模型因为数据的冗余所以很多统计查询不需要做外部的连接,因此一般情况下效率比雪花型模型要高。星型结构不用考虑很多正规化的因素,设计与实现都比较简单。雪花型模型由于去除了冗余,有些统计就需要通过表的联接才能产生,所以效率不一定有星型模型高。正规化也是一种比较复杂的过程,相应的数据库结构设计、数据的ETL、以及后期的维护都要复杂一些。因此在冗余可以接受的前提下,实际运用中星型模型使用更多,也更有效率。

结尾

Hive,其实就是把我们熟悉的sql语法,转换成我们hadoop的 mr。。简化我们的数仓开发

日常求赞

好了各位,以上就是这篇文章的全部内容了,能看到这里的人呀,都是真粉

创作不易,各位的支持和认可,就是我创作的最大动力,我们下篇文章见

六脉神剑 | 文 【原创】如果本篇博客有任何错误,请批评指教,不胜感激 !