前言
本篇是Android绘制流程记录的第二篇,在Window连接中分析了应用是如何与SurfaceFlinger关联的。
接下来就继续向下分析,看看在Window建立起显示基础后,是如何开始绘制的。
作为复习记录总结,同样只是进行一个粗略的、流程上的探究。
这里暂且先忽略一些难懂的细节,以建立起一个大致的概念为目标。
如果有误,欢迎指出,共同进步
源码解析
以下代码基于 Android 11 (Android R),限于篇幅,只保留重要核心代码。
1. 请求绘制视图
还记得上一篇在
ViewRootImpl.setWindow的方法中,调用的requestLayout吗?我们以此为出发点展开分析。
// ========== android.view.ViewRootImpl ===========
@Override
public void requestLayout() {
if (!mHandlingLayoutInLayoutRequest) {
checkThread();
mLayoutRequested = true;
scheduleTraversals();
}
}
//此处是在构造函数中初始化,非实际代码
//获取当前线程的实例,用于管理发送异步消息给当前线程的消息队列
//每个线程都有一个对应的Choreographer单例对象
final Choreographer mChoreographer = Choreographer.getInstance();
void scheduleTraversals() {
if (!mTraversalScheduled) {
mTraversalScheduled = true;
//添加主线程Handler的同步屏障到消息队列,阻塞所有的同步消息,优先处理异步消息(绘制)
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
//将绘制任务作为异步消息添加到当前线程(主线程)的消息队列中优先执行
mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
...
}
}
final TraversalRunnable mTraversalRunnable = new TraversalRunnable();
final class TraversalRunnable implements Runnable {
@Override
public void run() {
//执行UI绘制操作
doTraversal();
}
}
1.1 Choreographer
Choreographer是由ThreadLocal创建的线程单例,这里即为主线程的单例对象。
// ============= android.view.Choreographer =====================
public final class Choreographer {
// Thread local storage for the choreographer.
private static final ThreadLocal<Choreographer> sThreadInstance =
new ThreadLocal<Choreographer>() {
@Override
protected Choreographer initialValue() {
Looper looper = Looper.myLooper();
if (looper == null) {
throw new IllegalStateException("The current thread must have a looper!");
}
Choreographer choreographer = new Choreographer(looper, VSYNC_SOURCE_APP);
if (looper == Looper.getMainLooper()) {
mMainInstance = choreographer;
}
return choreographer;
}
};
public static Choreographer getInstance() {
return sThreadInstance.get();
}
}
在Choreographer中封装了一系列异步消息任务发送与处理逻辑,主要用于管理视图绘制、Input事件、动画等相关任务回调(调用外部Runnable)的时机。
这里主要关注的是向native发送Vsync同步信号请求,并利用Handler同步屏障尽可能确保在接收到Vsync同步信号后,能够立即执行绘制任务。
在调用
postSyncBarrier()添加同步屏障后,会阻塞当前线程消息队列,遍历消息队列,将异步任务取出来优先执行。同步屏障相关方法使用
@hide注解,外部要使用只能通过反射调用。
// ================== android.view.Choreographer =====================
public final class Choreographer {
//用于发送与接收Sync信号通知
private final FrameDisplayEventReceiver mDisplayEventReceiver;
//处理异步消息的主线程Handler
private final FrameHandler mHandler;
private boolean mFrameScheduled;
private Choreographer(Looper looper, int vsyncSource) {
mLooper = looper;
//当前线程(主线程)的处理视图重绘消息的Handler
mHandler = new FrameHandler(looper);
//非实际代码
mDisplayEventReceiver = new FrameDisplayEventReceiver(looper, vsyncSource);
}
private final class FrameHandler extends Handler {
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_DO_FRAME:
//执行绘制runnable
doFrame(System.nanoTime(), 0);
break;
case MSG_DO_SCHEDULE_VSYNC:
//内部调用nativeScheduleVsync的native方法,发送申请下一个Vsync信号通知
doScheduleVsync();
break;
case MSG_DO_SCHEDULE_CALLBACK:
//实际内部还是去执行请求Vsync信号的操作
doScheduleCallback(msg.arg1);
break;
}
}
}
//接收从native层返回的Vsync同步信号的接收器
private final class FrameDisplayEventReceiver extends DisplayEventReceiver
implements Runnable {
private int mFrame;
private long mTimestampNanos;
@Override
public void onVsync(long timestampNanos, long physicalDisplayId, int frame) {
//接收到native层发送的Vsync信号(如16ms一次)
long now = System.nanoTime();
...
//保存当次Vsync同步信号的时间戳
mTimestampNanos = timestampNanos;
mFrame = frame;
//发送执行异步消息,执行内部run()方法
Message msg = Message.obtain(mHandler, this);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
}
@Override
public void run() {
mHavePendingVsync = false;
//调用外部绘制Runnable
doFrame(mTimestampNanos, mFrame);
}
}
//外部调用的入口在这里,发送一个绘制请求
public void postCallback(int callbackType, Runnable action, Object token) {
postCallbackDelayed(callbackType, action, token, 0);
}
public void postCallbackDelayed(int callbackType,
Runnable action, Object token, long delayMillis) {
...
postCallbackDelayedInternal(callbackType, action, token, delayMillis);
}
//postCallback最终调用到postCallbackDelayedInternal
private void postCallbackDelayedInternal(int callbackType,
Object action, Object token, long delayMillis) {
synchronized (mLock) {
final long now = SystemClock.uptimeMillis();
final long dueTime = now + delayMillis;
//异步消息绘制任务的队列,将action添加到队列内,等待指定时间(屏幕刷新时间,如16ms)执行绘制任务
mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
if (dueTime <= now) {
//根据是否使用USE_VSYNC,发送MSG_DO_SCHEDULE_VSYNC或者MSG_DO_FRAME的异步消息
scheduleFrameLocked(now);
} else {
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
msg.arg1 = callbackType;
//设置消息为异步消息
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, dueTime);
}
}
}
//最终都是为了调用scheduleVsyncLocked申请Vsync同步信号
private void scheduleFrameLocked(long now) {
if (!mFrameScheduled) {
mFrameScheduled = true;
if (USE_VSYNC) {
...
if (isRunningOnLooperThreadLocked()) {
//内部调用nativeScheduleVsync的native方法,发送申请Vsync同步信号通知
scheduleVsyncLocked();
} else {
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
msg.setAsynchronous(true);
//强制添加消息到消息队列顶部,立即执行
mHandler.sendMessageAtFrontOfQueue(msg);
}
} else {
final long nextFrameTime = Math.max(
mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
...
Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, nextFrameTime);
}
}
}
void doScheduleCallback(int callbackType) {
synchronized (mLock) {
if (!mFrameScheduled) {
final long now = SystemClock.uptimeMillis();
if (mCallbackQueues[callbackType].hasDueCallbacksLocked(now)) {
//还是去调用Vsync请求
scheduleFrameLocked(now);
}
}
}
}
void doFrame(long frameTimeNanos, int frame) {
//还处理了其他CallBack,
//如CALLBACK_INPUT 是处理Input事件,也就是View的onTouch事件分发
//还有CALLBACK_ANIMATION 是处理动画相关事务
...
//调用指定类型的CallBack内部的Runnable执行
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
...
}
private void scheduleVsyncLocked() {
//调用native方法,请求Vsync同步信号
mDisplayEventReceiver.scheduleVsync();
}
}
// ============ android.view.DisplayEventReceiver ================
public abstract class DisplayEventReceiver {
//请求发送Vsync同步信号的通知
@FastNative
private static native void nativeScheduleVsync(long receiverPtr);
public void scheduleVsync() {
...
nativeScheduleVsync(mReceiverPtr);
}
// Called from native code.
//源码在native层实际调用的该方法,分发Vsync同步信号
private void dispatchVsync(long timestampNanos, long physicalDisplayId, int frame) {
onVsync(timestampNanos, physicalDisplayId, frame);
}
}
PS :在其内部还用到了个
Handler.sendMessageAtFrontOfQueue方法,能够立刻将消息添加到消息队列的顶部,获得优先执行权。参见: 消息机制的冷门知识点
个人能力有限,且本文主要注意力还是放在整体流程上,
nativeScheduleVsync先暂时不继续深入了。更多关于 Choreographer、Vsync同步信号传递机制参见:
Android Systrace 基础知识(7) - Vsync 解读
1.2 小结
在绘制流程中,
Choreographer实际上扮演了相当重要的承上启下的角色,相当于一个沟通枢纽。与视图相关的机制指令基本都是由
Choreographer来控制执行分发任务的。
2. Surface创建
既然requestLayout内部是通过给主线程Handler发送任务消息并在Vsync同步信号返回后执行Runable。
那我们就继续看看Runable内部执行的doTraversal方法做了些什么。
// ========== android.view.ViewRootImpl ===========
void doTraversal() {
if (mTraversalScheduled) {
mTraversalScheduled = false;
//移除同步屏障,已经开始执行View绘制任务,允许后续继续执行同步消息
mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
...
//执行遍历视图树操作
performTraversals();
...
}
}
private void performTraversals() {
//实际上就是最顶层的DecorView
final View host = mView;
...
//关键代码,检查Surface图像缓冲区队列建立连接
relayoutResult = relayoutWindow(...);
...
//window的宽高
if (mWidth != frame.width() || mHeight != frame.height()) {
mWidth = frame.width();
mHeight = frame.height();
}
...
// 最外层的测量宽高
int childWidthMeasureSpec = getRootMeasureSpec(mWidth, lp.width);
int childHeightMeasureSpec = getRootMeasureSpec(mHeight, lp.height);
//测量尺寸,内部执行View.measure()方法
performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
...
//布局排版,内部执行View.layout()方法
performLayout(lp, mWidth, mHeight);
...
//开始绘制View,内部执行View.draw()方法
performDraw();
...
}
视图绘制请求最终都在performTraversals方法内,依次执行measure,layout,draw等方法。
而在这些操作调用之前,会最先调用了一个relayoutWindow方法,这里先以此展开继续分析。
2.1 java层 SurfaceControl创建
// ============== android.view.ViewRootImpl ================
final IWindowSession mWindowSession;
//Surface的句柄类,默认构造为空对象,只是一个指针,没有实际引用
private final SurfaceControl mSurfaceControl = new SurfaceControl();
private SurfaceControl mBlastSurfaceControl = new SurfaceControl();
//默认构造函数是个空对象,只是一个指针,没有实际引用
public final Surface mSurface = new Surface();
private int relayoutWindow(WindowManager.LayoutParams params, int viewVisibility,...)...{
...
//跨进程Binder代理调用,内部创建了native的SurfaceControl,并赋值给jave层内部变量对象引用地址
int relayoutResult = mWindowSession.relayout(mWindow, mSeq, params,
(int) (mView.getMeasuredWidth() * appScale + 0.5f),
(int) (mView.getMeasuredHeight() * appScale + 0.5f),
..., mSurfaceControl, mSurfaceSize, mBlastSurfaceControl);
...
if (mSurfaceControl.isValid()) {
//此时mSurfaceControl已经有实际引用
...
//从SurfaceControl拷贝native Surface对象引用
mSurface.copyFrom(mSurfaceControl);
...
}
}
// ============ android.view.SurfaceControl =================
public final class SurfaceControl implements Parcelable {
// native层的SurfaceControl 的对象引用地址
public long mNativeObject;
// 默认实现为空对象
public SurfaceControl() {
}
public boolean isValid() {
return mNativeObject != 0;
}
}
// android.view.Surface
public class Surface implements Parcelable {
//默认为空对象
public Surface() {
}
}
relayoutWindow内部通过Binder机制跨进程调用了system_service进程内的Session.relayout方法,并传入了mSurfaceControl对象。
紧接着就开始判断该对象内部的mNativeObject变量不为0,然后让mSurface从该对象内拷贝赋值。
但mSurfaceControl默认构造函数又为空实现,所以可能就是在relayout方法内部被赋值了。
// ============== com.android.server.wm.Session =======================
class Session extends IWindowSession.Stub implements IBinder.DeathRecipient {
@Override
public int relayout(IWindow window, ...
SurfaceControl outSurfaceControl, ... , Point outSurfaceSize
SurfaceControl outBLASTSurfaceControl) {
...
int res = mService.relayoutWindow(this, window, ... ,
outSurfaceControl, outSurfaceSize,
outBLASTSurfaceControl);
...
return res;
}
}
//================== com.android.server.wm.WindowManagerService ===================
public int relayoutWindow(Session session, IWindow client, ... ,
SurfaceControl outSurfaceControl, ... , Point outSurfaceSize,
SurfaceControl outBLASTSurfaceControl) {
...
//获取addWindow时创建的WindowState对象
final WindowState win = windowForClientLocked(session, client, false);
...
WindowStateAnimator winAnimator = win.mWinAnimator;
...
int result = 0;
...
//判断是否需要重新建立关联的SurfaceControl
final boolean shouldRelayout = viewVisibility == View.VISIBLE &&
(win.mActivityRecord == null || win.mAttrs.type == TYPE_APPLICATION_STARTING
|| win.mActivityRecord.isClientVisible());
...
//窗口内第一次启动
if(shouldRelayout){
//创建native的SurfaceControl
result = createSurfaceControl(outSurfaceControl, outBLASTSurfaceControl,
result, win, winAnimator);
}else{
...
}
...
return result
}
final WindowState windowForClientLocked(Session session, IBinder client, boolean throwOnError) {
//获取当前App进程的View与system_service进程关联,addWindow时创建的WindowState,
//其持有与SurfaceFLinger连接的Client
WindowState win = mWindowMap.get(client);
...
return win;
}
Session作为一个中间类,会转交给WindowManagerService.relayoutWindow处理。
而且在relayoutWindow中,传入了一个outSurfaceControl参数,看变量命名就知道这是一个输出的对象了。
在其内部调用了createSurfaceControl方法,并将该参数传入。
//================== com.android.server.wm.WindowManagerService ===================
private int createSurfaceControl(SurfaceControl outSurfaceControl,
SurfaceControl outBLASTSurfaceControl, int result,
WindowState win, WindowStateAnimator winAnimator) {
...
WindowSurfaceController surfaceController =
winAnimator.createSurfaceLocked(win.mAttrs.type, win.mOwnerUid);
...
//内部调用copyFrom方法,即拷贝到outSurfaceControl
surfaceController.getSurfaceControl(outSurfaceControl);
surfaceController.getBLASTSurfaceControl(outBLASTSurfaceControl);
}
为了避免迷失在源码中,我们暂且忽略WindowStateAnimator.createSurfaceLocked()的创建,从getSurfaceControl方法作为切入点。
// ============ com.android.server.wm.WindowSurfaceController ====================
class WindowSurfaceController {
SurfaceControl mSurfaceControl;
WindowSurfaceController(String name, int w, int h, ...,
WindowStateAnimator animator,...) {
final WindowState win = animator.mWin;
...
//暂且忽略这一串Builder参数,Window请求Surface
final SurfaceControl.Builder b = win.makeSurface()
.setParent(win.getSurfaceControl())
.setName(name)
.setBufferSize(w, h)
.setFormat(format)
.setFlags(flags)
.setMetadata(METADATA_WINDOW_TYPE, windowType)
.setMetadata(METADATA_OWNER_UID, ownerUid)
.setCallsite("WindowSurfaceController");
...
mSurfaceControl = b.build();
...
}
void getSurfaceControl(SurfaceControl outSurfaceControl) {
outSurfaceControl.copyFrom(mSurfaceControl, "WindowSurfaceController.getSurfaceControl");
}
void getBLASTSurfaceControl(SurfaceControl outSurfaceControl) {
if (mBLASTSurfaceControl != null) {
outSurfaceControl.copyFrom(mBLASTSurfaceControl, "WindowSurfaceController.getBLASTSurfaceControl");
}
}
}
getSurfaceControl实际上就是从WindowSurfaceController内部拷贝了一份SurfaceControl,并赋值给传入的outSurfaceControl。
而且在WindowSurfaceController的构造函数内,通过SurfaceControl.Builder.build方法请求并创建了这个原始SurfaceControl。
// ============ android.view.SurfaceControl ====================
public final class SurfaceControl implements Parcelable {
public static class Builder {
private SurfaceSession mSession;
public SurfaceControl build() {
return new SurfaceControl(mSession, mName, mWidth, mHeight,...);
}
}
//native 的 SurfaceControl 对象引用地址
public long mNativeObject;
//空实现
public SurfaceControl() {
}
private SurfaceControl(SurfaceSession session, String name, int w, int h, int format, int flags,
SurfaceControl parent, SparseIntArray metadata, WeakReference<View> localOwnerView,
String callsite) ... {
...
//关键代码
mNativeObject = nativeCreate(session, name, w, h, format, flags,
parent != null ? parent.mNativeObject : 0, metaParcel);
...
}
//native方法,实际创建了native层的Surface
private static native long nativeCreate(SurfaceSession session, ... ) ...;
private static native long nativeCopyFromSurfaceControl(long nativeObject);
private static native long nativeGetHandle(long nativeObject);
public void copyFrom(@NonNull SurfaceControl other, String callsite) {
...
//实际是复制了这个mNativeObject对象引用
assignNativeObject(nativeCopyFromSurfaceControl(other.mNativeObject), callsite);
}
private void assignNativeObject(long nativeObject, String callsite) {
...
mNativeObject = nativeObject;
mNativeHandle = mNativeObject != 0 ? nativeGetHandle(nativeObject) : 0;
}
}
可以看到SurfaceControl.copyFrom方法中,实际是通过native方法nativeCopyFromSurfaceControl将mNativeObject进行拷贝,且这个变量在Builder.build()方法调用的私有构造函数中同样由native方法nativeCreate创建。
2.2 native层 SurfaceControl创建
以下native方法通过Android Search Code查看,需要翻墙。
代码基于Android11-rc3,限于篇幅有限,只保留关键核心代码。
我们先来看nativeCreate方法
// ========== frameworks/base/core/jni/android_view_SurfaceControl.cpp ===============
static jlong nativeCreate(JNIEnv* env, jclass clazz, jobject sessionObj,
jstring nameStr, jint w, jint h, jint format, jint flags, jlong parentObject,
jobject metadataParcel) {
...
sp<SurfaceComposerClient> client;
if (sessionObj != NULL) {
//SurfaceSession不为空的情况,也就是前面建立连接时创建的SurfaceComposerClient
client = android_view_SurfaceSession_getClient(env, sessionObj);
} else {
client = SurfaceComposerClient::getDefault();
}
SurfaceControl *parent = reinterpret_cast<SurfaceControl*>(parentObject);
sp<SurfaceControl> surface;
LayerMetadata metadata;
Parcel* parcel = parcelForJavaObject(env, metadataParcel);
if (parcel && !parcel->objectsCount()) {
status_t err = metadata.readFromParcel(parcel);
...
}
//通过SurfaceComposerClient创建native SurfaceControl
status_t err = client->createSurfaceChecked(
String8(name.c_str()), w, h, format, &surface, flags, parent, std::move(metadata));
...
surface->incStrong((void *)nativeCreate);
return reinterpret_cast<jlong>(surface.get());
}
// =========== frameworks/base/core/jni/android_view_SurfaceSession.cpp =================
sp<SurfaceComposerClient> android_view_SurfaceSession_getClient(
JNIEnv* env, jobject surfaceSessionObj) {
return reinterpret_cast<SurfaceComposerClient*>(
env->GetLongField(surfaceSessionObj, gSurfaceSessionClassInfo.mNativeClient));
}
其内部是返回了一个native的SurfaceControl对象引用地址。
而且我们在这里又看到了熟悉的
SurfaceComposerClient!
随后通过SurfaceComposerClient.createSurfaceChecked创建这个native层的SurfaceControl对象。
// ================= frameworks/native/libs/gui/SurfaceComposerClient.cpp ===================
sp<ISurfaceComposerClient> mClient;
status_t SurfaceComposerClient::createSurfaceChecked(...,
sp<SurfaceControl>* outSurface, ...,
SurfaceControl* parent, LayerMetadata metadata,
...) {
sp<SurfaceControl> sur;
status_t err = mStatus;
...
if (mStatus == NO_ERROR) {
sp<IBinder> handle;
sp<IGraphicBufferProducer> gbp;
...
// 跨进程Binder代理调用Client的createSurface方法,
// 内部并最终调用到SurfaceFlinger.createLayer,创建Layer
// 传入了两个代理类对象引用
err = mClient->createSurface(...&handle,&gbp,...);
if (outTransformHint) {
*outTransformHint = transformHint;
}
...
if (err == NO_ERROR) {
//创建一个新的SurfaceControl对象,并将引用赋值给外部传入的SurfaceControl
*outSurface = new SurfaceControl(this, handle, gbp, transformHint);
}
}
return err;
}
是否还记得
SurfaceComposerClient内部的mClient对象呢?实际就是在Window建立连接中分析的,与
SurfaceFlinger连接时,创建Client的Binder代理类。
Client.createSurface最终会调用到SurfaceFlinger.createLayer方法创建Layer。
Layer是SurfaceFlinger的基本操作单元。
// =========== frameworks/native/services/surfaceflinger/Client.cpp ==================
sp<SurfaceFlinger> mFlinger;
status_t Client::createSurface(const String8& name, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags, const sp<IBinder>& parentHandle,
LayerMetadata metadata, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp, uint32_t* outTransformHint) {
// We rely on createLayer to check permissions.
return mFlinger->createLayer(name, this, w, h, format, flags, std::move(metadata), handle, gbp,
parentHandle, nullptr, outTransformHint);
}
// ================== frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp ==================
status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
uint32_t h, PixelFormat format, uint32_t flags,
LayerMetadata metadata, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
const sp<IBinder>& parentHandle, const sp<Layer>& parentLayer,
uint32_t* outTransformHint) {
status_t result = NO_ERROR;
sp<Layer> layer;
//根据flags创建不同的Layer
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceBufferQueue:
//常用的BufferQueueLayer
result = createBufferQueueLayer(client, std::move(uniqueName), w, h, flags,
std::move(metadata), format, handle, gbp, &layer);
break;
//还有好几种Layer
...
}
...
//保存新创建的Layer
mInterceptor->saveSurfaceCreation(layer);
return result;
}
个人能力有限,这里暂时只关注其中的BufferQueueLayer。
更多关于
SurfaceFlinger创建Layer过程可以参见:
// ================ frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp ==================
status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, std::string name,
uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata, PixelFormat& format,
sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
sp<Layer>* outLayer) {
sp<BufferQueueLayer> layer;
...
//通过工厂模式创建BufferQueueLayer
layer = getFactory().createBufferQueueLayer(args);
...
//设置一些Layer内部的属性
status_t err = layer->setDefaultBufferProperties(w, h, format);
if (err == NO_ERROR) {
// 注意这两个对象引用,是会传到外部SurfaceControl构造函数的
*handle = layer->getHandle();
*gbp = layer->getProducer();
*outLayer = layer;
}
return err;
}
在SurfaceFlinger创建出Layer后,引出了 IGraphicBufferProducer和IBinder的代理类,并传入到SurfaceControl的构造函数。
// =========== frameworks/native/libs/gui/SurfaceControl.cpp ===============
SurfaceControl::SurfaceControl(const sp<SurfaceComposerClient>& client, const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbp,
uint32_t transform)
: mClient(client),
mHandle(handle),
mGraphicBufferProducer(gbp),
mTransformHint(transform) {}
也就是说SurfaceFlinger中创建的Layer是通过其内部的Producer代理对象和Handle代理对象,与SurfaceControl进行关联。
就以此为切入点,来看下getProducer和getHandle究竟获取到了什么?
// ========= frameworks/native/services/surfaceflinger/Layer.cpp =================
sp<IBinder> Layer::getHandle() {
...
return new Handle(mFlinger, this);
}
class Handle : public BBinder, public LayerCleaner {
public:
Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
: LayerCleaner(flinger, layer), owner(layer) {}
wp<Layer> owner;
};
// ============== frameworks/native/services/surfaceflinger/BufferQueueLayer.cpp =================
sp<IGraphicBufferProducer> BufferQueueLayer::getProducer() const {
return mProducer;
}
getHandle是新创建了一个Handle对象,属于BBinder实现类,内部包含了SurfaceFlinger和Layer的引用,作为Surface操作Layer句柄类。
那getProducer返回的内部对象引用又是什么呢?我们继续来看其构造函数
BufferQueueLayer是继承自BufferLayer,BufferLayer继承自Layer。Layer又是继承自RefBase。
// ============= frameworks/native/services/surfaceflinger/BufferQueueLayer.h ==============
class BufferQueueLayer : public BufferLayer {
private {
sp<IGraphicBufferProducer> mProducer;
}
...
}
// ============== frameworks/native/services/surfaceflinger/BufferLayer.h ============
class BufferLayer : public Layer {
...
}
// ============== frameworks/native/services/surfaceflinger/Layer.h ================
class Layer : public virtual RefBase, compositionengine::LayerFE {
...
}
// ============== frameworks/native/services/surfaceflinger/BufferQueueLayer.cpp ================
void BufferQueueLayer::onFirstRef() {
BufferLayer::onFirstRef();
// Creates a custom BufferQueue for SurfaceFlingerConsumer to use
//创建了一个生产者和消费者模型,
sp<IGraphicBufferProducer> producer; //生产者缓冲区
sp<IGraphicBufferConsumer> consumer; //消费者缓冲区
//创建了一个BufferQueueCore管理BufferQueue队列,并以此为核心创建赋值生产者与消费者
mFlinger->getFactory().createBufferQueue(&producer, &consumer, true);
mProducer = mFlinger->getFactory().createMonitoredProducer(producer, mFlinger, this);
mConsumer = mFlinger->getFactory().createBufferLayerConsumer(consumer, mFlinger->getRenderEngine(),
mTextureName, this);
...
// BufferQueueCore::mMaxDequeuedBufferCount is default to 1
if (!mFlinger->isLayerTripleBufferingDisabled()) {
//如果没有开启3级缓冲区,则设置为2级缓冲区
mProducer->setMaxDequeuedBufferCount(2);
}
}
既然是RefBase的子类,在第一次获取到强引用时就会触发onFirstRef方法,其在内部创建了一个基于BufferQueue的生产者与消费者模型。
而通过getProducer方法获取到的正是其作为生产者BufferQueueProducer,用于从BufferQueueCore中获取图像缓冲区buffer对象,交由客户端写入显示内容。
// ============ frameworks/native/libs/gui/BufferQueue.cpp ===============
// getFactory().createBufferQueue
// 最终会调用到BufferQueue.createBufferQueue方法
void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer,
sp<IGraphicBufferConsumer>* outConsumer,
bool consumerIsSurfaceFlinger) {
LOG_ALWAYS_FATAL_IF(outProducer == nullptr,
"BufferQueue: outProducer must not be NULL");
LOG_ALWAYS_FATAL_IF(outConsumer == nullptr,
"BufferQueue: outConsumer must not be NULL");
//图形缓冲区队列的中枢类
sp<BufferQueueCore> core(new BufferQueueCore());
...
//用core类创建生产者,用于从队列中获取缓冲区并写入绘制内容
//返回为Binder代理类
sp<IGraphicBufferProducer> producer(new BufferQueueProducer(core, consumerIsSurfaceFlinger));
...
//用core类创建消费者,用于从队列中获取缓冲区数据,并交由Surfaceflinger处理
//返回为Binder代理类
sp<IGraphicBufferConsumer> consumer(new BufferQueueConsumer(core));
...
*outProducer = producer;
*outConsumer = consumer;
}
个人能力有限,本文还是更多关注于主要流程上,
Surfaceflinger的生产者消费者模型,这里暂时不深入分析了。可以参见:Android 图形架构 之四——图形缓冲区的申请和消费流程及核心类
每个需要显示功能的进程都会与
SurfaceFlinger间建立起一个独立的生产者消费者模型BufferQueue。PS :
Producer是处于SurfaceFlinger进程内的,需要通过Binder机制通信。
- 小结:
至此,native层
SurfaceControl创建就出来了,通过BufferQueueProducer的Binder代理类,和SurfaceFlinger创建的Layer进行关联。并最终将native层的
SurfaceControl对象引用,赋值给java层的SurfaceControl。
另:
前面提到
relayoutWindow中的SurfaceControl,调用SurfaceControl.copyFrom方法从WindowSurfaceController中通过native方法拷贝。// ============= frameworks/base/core/jni/android_view_SurfaceControl.cpp ================ static jlong nativeCopyFromSurfaceControl(JNIEnv* env, jclass clazz, jlong surfaceControlNativeObj) { sp<SurfaceControl> surface(reinterpret_cast<SurfaceControl *>(surfaceControlNativeObj)); if (surface == nullptr) { return 0; } sp<SurfaceControl> newSurface = new SurfaceControl(surface); newSurface->incStrong((void *)nativeCreate); return reinterpret_cast<jlong>(newSurface.get()); } static jlong nativeGetHandle(JNIEnv* env, jclass clazz, jlong nativeObject) { SurfaceControl *surfaceControl = reinterpret_cast<SurfaceControl*>(nativeObject); return reinterpret_cast<jlong>(surfaceControl->getHandle().get()); }
2.3 java层 Surface创建
接下来就是通过Surface.copyFrom对这个新的SurfaceControl拷贝出可用的Surface了。
// ============= android.view.Surface ================
public class Surface implements Parcelable {
long mNativeObject; // package scope only for SurfaceControl access
private static native long nativeGetFromSurfaceControl(long surfaceObject,
long surfaceControlNativeObject);
private static native void nativeRelease(long nativeObject);
public void copyFrom(SurfaceControl other) {
...
long surfaceControlPtr = other.mNativeObject;
...
//从SurfaceControl内创建Surface
long newNativeObject = nativeGetFromSurfaceControl(mNativeObject, surfaceControlPtr);
synchronized (mLock) {
if (newNativeObject == mNativeObject) {
return;
}
if (mNativeObject != 0) {
nativeRelease(mNativeObject);
}
setNativeObjectLocked(newNativeObject);
}
}
private void setNativeObjectLocked(long ptr) {
if (mNativeObject != ptr) {
...
mNativeObject = ptr;
mGenerationId += 1;
if (mHwuiContext != null) {
mHwuiContext.updateSurface();
}
}
}
}
2.4 native层 Surface创建
在Surface.copyFrom方法内,同样也是通过native方法,赋值native对象引用地址。
通过调用native层的
SurfaceControl.generateSurfaceLocked方法创建了native层的Surface。然后将native层
Surface的对象引用指针,赋值给java层Surface的mNativeObject。
// ============== frameworks/base/core/jni/android_view_Surface.cpp ====================
static jlong nativeGetFromSurfaceControl(JNIEnv* env, jclass clazz,
jlong nativeObject,
jlong surfaceControlNativeObj) {
Surface* self(reinterpret_cast<Surface *>(nativeObject));
sp<SurfaceControl> ctrl(reinterpret_cast<SurfaceControl *>(surfaceControlNativeObj));
// If the underlying IGBP's are the same, we don't need to do anything.
if (self != nullptr &&
IInterface::asBinder(self->getIGraphicBufferProducer()) ==
IInterface::asBinder(ctrl->getIGraphicBufferProducer())) {
//实际持有的Producer代理对象是同一个,不做任何处理
return nativeObject;
}
//通过SurfaceControl创建native层的Surface
sp<Surface> surface(ctrl->getSurface());
if (surface != NULL) {
surface->incStrong(&sRefBaseOwner);
}
//返回native层surface对象的引用地址
return reinterpret_cast<jlong>(surface.get());
}
// =========== frameworks/native/libs/gui/SurfaceControl.cpp ==================
mutable sp<Surface> mSurfaceData;
sp<Surface> SurfaceControl::getSurface() const
{
Mutex::Autolock _l(mLock);
if (mSurfaceData == nullptr) {
return generateSurfaceLocked();
}
return mSurfaceData;
}
sp<Surface> SurfaceControl::generateSurfaceLocked() const
{
// mGraphicBufferProducer就是Layer的中图形缓冲区域对应的生产者
// 创建native层的Surface
mSurfaceData = new Surface(mGraphicBufferProducer, false);
return mSurfaceData;
}
2.5 小结
至此,
ViewRootImpl内持有的Suface就转变为可用状态,并指向正确的native层Surface对象引用,进而关联到SurfaceFlinger创建的BufferQueue。
总结
最后来简要概括一下Surface创建的过程
首先由
ViewRootImpl.requestLayout通过Choreographer向native申请Vsync同步信号。App进程的
Choreographer接收到Vsync同步信号后,通过SurfaceControl内部创建并持有对应的native层SurfaceControl对象引用地址。在native层 中用
SurfaceSession中持有的SurfaceComposerClient通过Binder跨进程调用,在SurfaceFlinger进程内中创建一个独立的,基于BufferQueue的生产者消费者模型。在native层
SurfaceControl创建时,会将BufferQueue的生产者Producer的Binder代理类对象赋值给其内部变量。由java层
Surface.copyFrom藉由native层SurfaceControl创建native层的Surface对象,后者持有来自native层SurfaceControl的Producer的对象引用。native层
SurfaceControl内部会缓存native层Surface到内部变量引用,只会在第一次获取时创建。将该native层
Surface对象引用地址赋值给jave层的Surface对象,使后者指向正确对象引用地址。java层的
Surface和SurfaceControl都是空壳,实际做事的都是native层的Surface和SurfaceControl。
下一篇继续分析View的绘制流程。
参考资料
Android Java层UI渲染实现 四 Surface的创建和View绘制